A high-order discontinuous Galerkin approach to the elasto-acoustic problem

Francesco Bonaldi

joint work with P. F. Antonietti and I. Mazzieri

MOX, Dipartimento di Matematica

Politecnico di Milano

Journées Jeunes EDPistes, Nancy

22 mars 2018

F. Bonaldi

JEF 2018

Motivations

http://speed.mox.polimi.it/

https://www.ictsmarhis.com/

- Simulation of earthquake scenarios near coastal environments
- Coupling of elastic and acoustic wave propagation

Motivations

http://speed.mox.polimi.it/

 Coupling of elastic and acoustic wave propagation

Requirements on the numerical scheme

- Flexibility
- Accuracy
- Efficiency

https://www.ictsmarhis.com/

Motivations

http://speed.mox.polimi.it/

https://www.ictsmarhis.com/

- Simulation of earthquake scenarios near coastal environments
- Coupling of elastic and acoustic wave propagation

Requirements on the numerical scheme

- Flexibility
- Accuracy
- Efficiency

Goal

- Numerical treatment based on polyhedral meshes
- The dG method supports high-order polynomials on such meshes

State of the art

Minimal bibliography

- [Komatitsch et al., 2000]: Spectral Elements
- [Fischer and Gaul, 2005]: FEM–BEM coupling, Lagrange multipliers
- [Flemisch et al., 2006]: classical FEM on two independent meshes
- [Brunner et al., 2009]: FEM–BEM comparison
- [Barucq et al., 2014]: analytical study
- [Barucq et al., 2014]: dG on simplices, curved edges on interface
- [Péron, 2014]: asymptotic study
- [De Basabe and Sen, 2015]: Spectral Elements and Finite Differences
- [Mönköla, 2016]: Spectral Elements, different formulations

State of the art

Minimal bibliography

- [Komatitsch et al., 2000]: Spectral Elements
- [Fischer and Gaul, 2005]: FEM–BEM coupling, Lagrange multipliers
- [Flemisch et al., 2006]: classical FEM on two independent meshes
- [Brunner et al., 2009]: FEM–BEM comparison
- [Barucq et al., 2014]: analytical study
- [Barucq et al., 2014]: dG on simplices, curved edges on interface
- [Péron, 2014]: asymptotic study
- [De Basabe and Sen, 2015]: Spectral Elements and Finite Differences
- [Mönköla, 2016]: Spectral Elements, different formulations

Our contribution

- Well-posedness of the coupled problem in the continuous setting
- Detailed analysis of a dG scheme on general polytopic meshes

F. Bonaldi

JEF 2018

The elasto-acoustic problem

Governing equations

	$\int ho_e \ddot{oldsymbol{u}} + 2 ho_e \zeta \dot{oldsymbol{u}} + ho_e \zeta^2 oldsymbol{u} - {f div} oldsymbol{\sigma}(oldsymbol{u}) = oldsymbol{f}_e$	in $\Omega_e \times (0,T]$,
	$oldsymbol{\sigma}(oldsymbol{u}) - \mathbb{C}oldsymbol{arepsilon}(oldsymbol{u}) = oldsymbol{0}$	in $\Omega_e \times (0,T]$,
	$\boldsymbol{u}=\boldsymbol{0}$	on $\Gamma_{eD} \times (0,T]$,
	$\boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{n}_{e}=-\rho_{a}\dot{\varphi}\boldsymbol{n}_{e}$	on $\Gamma_{\mathrm{I}} \times (0, T]$,
{	$u(0) = u_0, \ \dot{u}(0) = u_1$	in Ω_e ,
	$c^{-2}\ddot{\varphi} - \bigtriangleup \varphi = f_a$	in $\Omega_a imes (0,T]$,
	arphi=0	on $\Gamma_{aD} imes (0,T]$
	$\partial arphi / \partial oldsymbol{n}_a = - \dot{oldsymbol{u}} \cdot oldsymbol{n}_a$	on $\Gamma_{\mathrm{I}} \times (0,T]$,
	$arphi(0)=arphi_0, \ \ \dot{arphi}(0)=arphi_1$	in Ω_a

- The fluid exerts a pressure on the solid at the interface
- The normal component of the velocity is continuous at the interface

F. Bonaldi

Well-posedness

Theorem (Existence and uniqueness)

Under suitable regularity hypotheses on initial data and source terms, there is a **unique strong solution** s.t.

$$\begin{split} \boldsymbol{u} \in C^2([0,T]; \boldsymbol{L}^2(\Omega_e)) &\cap C^1([0,T]; \boldsymbol{H}_D^1(\Omega_e)) \cap C^0([0,T]; \boldsymbol{H}_{\mathbb{C}}^{\triangle}(\Omega_e) \cap \boldsymbol{H}_D^1(\Omega_e)), \\ \varphi \in C^2([0,T]; L^2(\Omega_a)) \cap C^1([0,T]; \boldsymbol{H}_D^1(\Omega_a)) \cap C^0([0,T]; \boldsymbol{H}^{\triangle}(\Omega_a) \cap \boldsymbol{H}_D^1(\Omega_a)), \end{split}$$

$$\begin{split} \boldsymbol{H}^{\Delta}_{\mathbb{C}}(\Omega_{e}) &\coloneqq \{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega_{e}) : \operatorname{div} \mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{v}) \in \boldsymbol{L}^{2}(\Omega_{e})\}\\ \boldsymbol{H}^{\Delta}(\Omega_{a}) &\coloneqq \{\boldsymbol{v} \in L^{2}(\Omega_{a}) : \Delta \boldsymbol{v} \in L^{2}(\Omega_{a})\} \end{split}$$

Well-posedness

Theorem (Existence and uniqueness)

Under suitable regularity hypotheses on initial data and source terms, there is a **unique strong solution** s.t.

$$\begin{split} \boldsymbol{u} &\in C^2([0,T]; \boldsymbol{L}^2(\Omega_e)) \cap C^1([0,T]; \boldsymbol{H}_D^1(\Omega_e)) \cap C^0([0,T]; \boldsymbol{H}_{\mathbb{C}}^{\triangle}(\Omega_e) \cap \boldsymbol{H}_D^1(\Omega_e)), \\ \varphi &\in C^2([0,T]; L^2(\Omega_a)) \cap C^1([0,T]; \boldsymbol{H}_D^1(\Omega_a)) \cap C^0([0,T]; \boldsymbol{H}^{\triangle}(\Omega_a) \cap \boldsymbol{H}_D^1(\Omega_a)), \end{split}$$

$$\begin{aligned} \boldsymbol{H}_{\mathbb{C}}^{\Delta}(\Omega_{e}) &\coloneqq \{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega_{e}) : \operatorname{div} \mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{v}) \in \boldsymbol{L}^{2}(\Omega_{e}) \} \\ H^{\Delta}(\Omega_{a}) &\coloneqq \{v \in L^{2}(\Omega_{a}) : \Delta v \in L^{2}(\Omega_{a}) \} \end{aligned}$$

Proof

Apply Hille-Yosida upon rewriting the system as

$$\frac{\mathrm{d}\mathcal{U}}{\mathrm{d}t}(t) + A\mathcal{U}(t) = \mathcal{F}(t), \quad t \in (0, T],$$
$$\mathcal{U}(0) = \mathcal{U}_0$$

Meshes and spaces

Mesh

- Nonconforming **polyhedral** mesh $T_h = T_h^e \cup T_h^a$
- Arbitrary number of faces per element
- Possible presence of degenerating faces

[Cangiani et al., 2017], [Antonietti et al., 2017]

Discrete spaces

$$\begin{split} \boldsymbol{V}_{h}^{e} &= \{\boldsymbol{v}_{h} \in \boldsymbol{L}^{2}(\Omega_{e}) : \boldsymbol{v}_{h|\kappa} \in \left[\mathscr{P}_{p_{e,\kappa}}(\kappa)\right]^{d} \forall \kappa \in \mathcal{T}_{h}^{e}\},\\ V_{h}^{a} &= \left\{\psi_{h} \in \boldsymbol{L}^{2}(\Omega_{a}) : \psi_{h|\kappa} \in \mathscr{P}_{p_{a,\kappa}}(\kappa) \; \forall \kappa \in \mathcal{T}_{h}^{a}\right\} \end{split}$$

Semi-discrete problem

Find $(\boldsymbol{u}_h, \varphi_h) \in C^2([0, T]; \boldsymbol{V}_h^e) \times C^2([0, T]; \boldsymbol{V}_h^a)$ s.t., for all $(\boldsymbol{v}_h, \psi_h) \in \boldsymbol{V}_h^e \times \boldsymbol{V}_h^a$, $(\rho_e \ddot{\boldsymbol{u}}_h(t), \boldsymbol{v}_h)_{\Omega_e} + (c^{-2}\rho_a \ddot{\varphi}_h(t), \psi_h)_{\Omega_a}$ $+ (2\rho_e \zeta \dot{\boldsymbol{u}}_h(t), \boldsymbol{v}_h)_{\Omega_e} + (\rho_e \zeta^2 \boldsymbol{u}_h(t), \boldsymbol{v}_h)_{\Omega_e}$ $+ \mathcal{A}_h^e(\boldsymbol{u}_h(t), \boldsymbol{v}_h) + \mathcal{A}_h^a(\varphi_h(t), \psi_h)$ $+ \mathcal{I}_h^e(\dot{\varphi}_h(t), \boldsymbol{v}_h) + \mathcal{I}_h^a(\dot{\boldsymbol{u}}_h(t), \psi_h)$ $= (\boldsymbol{f}_e(t), \boldsymbol{v}_h)_{\Omega_e} + (f_a(t), \psi_h)_{\Omega_a}$

Semi-discrete problem

Find $(\boldsymbol{u}_h, \varphi_h) \in C^2([0, T]; \boldsymbol{V}_h^e) \times C^2([0, T]; \boldsymbol{V}_h^a)$ s.t., for all $(\boldsymbol{v}_h, \psi_h) \in \boldsymbol{V}_h^e \times \boldsymbol{V}_h^a$, $(\rho_e \ddot{\boldsymbol{u}}_h(t), \boldsymbol{v}_h)_{\Omega_e} + (c^{-2}\rho_a \ddot{\varphi}_h(t), \psi_h)_{\Omega_a}$ $+ (2\rho_e \zeta \dot{\boldsymbol{u}}_h(t), \boldsymbol{v}_h)_{\Omega_e} + (\rho_e \zeta^2 \boldsymbol{u}_h(t), \boldsymbol{v}_h)_{\Omega_e}$ $+ \boldsymbol{\mathcal{A}}_h^e(\boldsymbol{u}_h(t), \boldsymbol{v}_h) + \boldsymbol{\mathcal{A}}_h^a(\varphi_h(t), \psi_h)$ $+ \boldsymbol{\mathcal{I}}_h^e(\dot{\varphi}_h(t), \boldsymbol{v}_h) + \boldsymbol{\mathcal{I}}_h^a(\dot{\boldsymbol{u}}_h(t), \psi_h)$ $= (\boldsymbol{f}_e(t), \boldsymbol{v}_h)_{\Omega_e} + (f_a(t), \psi_h)_{\Omega_a}$

Stability

For sufficiently large stabilization parameters,

$$\|(\boldsymbol{u}_h(t),\varphi_h(t))\|_{\mathcal{E}} \lesssim \|(\boldsymbol{u}_h(0),\varphi_h(0))\|_{\mathcal{E}} + \int_0^t (\|\boldsymbol{f}_e(\tau)\|_{\Omega_e} + \|f_a(\tau)\|_{\Omega_a}) \,\mathrm{d}\tau$$

Error estimate

Energy error estimate

 $\begin{array}{l} \text{If } (\boldsymbol{u}, \varphi) \in C^2([0,T]; \boldsymbol{H}^m(\Omega_e)) \times C^2([0,T]; H^n(\Omega_a)), \text{ with } \boldsymbol{m} \geq p_e + 1 \text{ and } n \geq p_a + 1, \\ & \text{ and if stabilization parameters are sufficiently large,} \end{array}$

$$\begin{split} \sup_{t\in[0,T]} \|(\boldsymbol{e}_{e}(t), \boldsymbol{e}_{a}(t))\|_{\mathcal{E}}^{2} &\lesssim \frac{h^{2p_{e}}}{p_{e}^{2m-3}} \left(\sup_{t\in[0,T]} \left(\|\dot{\boldsymbol{u}}(t)\|_{m,\Omega_{e}}^{2} + \|\boldsymbol{u}(t)\|_{m,\Omega_{e}}^{2} \right) \\ &+ \int_{0}^{T} \left(\|\ddot{\boldsymbol{u}}(t)\|_{m,\Omega_{e}}^{2} + \|\dot{\boldsymbol{u}}(t)\|_{m,\Omega_{e}}^{2} + \|\boldsymbol{u}(t)\|_{m,\Omega_{e}}^{2} \right) dt \right) \\ &+ \frac{h^{2p_{a}}}{p_{a}^{2n-3}} \left(\sup_{t\in[0,T]} \left(\|\dot{\boldsymbol{\varphi}}(t)\|_{n,\Omega_{a}}^{2} + \|\boldsymbol{\varphi}(t)\|_{n,\Omega_{a}}^{2} + \|\boldsymbol{\varphi}(t)\|_{n,\Omega_{a}}^{2} \right) \\ &+ \int_{0}^{T} \left(\|\ddot{\boldsymbol{\varphi}}(t)\|_{n,\Omega_{a}}^{2} + \|\dot{\boldsymbol{\varphi}}(t)\|_{n,\Omega_{a}}^{2} + \|\boldsymbol{\varphi}(t)\|_{n,\Omega_{a}}^{2} \right) dt \right) \end{split}$$

Optimal in h, suboptimal in p by a factor 1/2

F. Bonaldi	JEF 2018

Numerical example I

Test case 1

We solve the elasto-acoustic problem on $\Omega_e \cup \Omega_a$, for T = 1, $\Delta t = 10^{-4}$, for a homogeneous isotropic elastic material, such that

Numerical example I

Figure: $\|\boldsymbol{u} - \boldsymbol{u}_h\|_{\mathrm{dG},e}$ and $\|\varphi - \varphi_h\|_{\mathrm{dG},a}$ vs. h (left) and p (right) at T = 1

Numerical example II

Test case 2 [Mönköla, 2016]

We solve the elasto-acoustic problem on $\Omega_e \cup \Omega_a$, for T = 0.8, $\Delta t = 10^{-4}$, for a homogeneous isotropic elastic material, such that

Numerical example II

Figure: $\|\boldsymbol{u} - \boldsymbol{u}_h\|_{dG,e}$ and $\|\varphi - \varphi_h\|_{dG,a}$ vs. h (left) and p (right) at T = 0.8

Physical example

$$t \mapsto -2\pi a \left(1 - 2\pi a (t - t_0)^2\right) e^{-\pi a (t - t_0)^2}$$

Physical example

We simulate a seismic source in the acoustic domain by a point-wise source:

$$f_a(\boldsymbol{x},t) = -2\pi a \left(1 - 2\pi a (t-t_0)^2\right) e^{-\pi a (t-t_0)^2} \delta(\boldsymbol{x} - \boldsymbol{x}_0), \quad \boldsymbol{x}_0 \in \Omega_a, \ t_0 \in (0,T],$$
$$\boldsymbol{x}_0 = (0,2,0,5), \quad t_0 = 0,1$$

Ε.	Bo	ona	ldi
	_		

Physical example

$$t \mapsto \|\boldsymbol{u}(x,y;t)\|_2$$
 and $t \mapsto |\varphi(x,y;t)|$

F. Bonaldi	JEF 2018	22 mars 2018 13 / 16

Conclusions & perspectives

Conclusions

- We proved that the elasto-acoustic problem is well-posed in the continuous setting
- We proved and numerically validated *hp*-convergence results for a discontinuous Galerkin method on polyhedral meshes
- We used the method to simulate an example of physical interest

Conclusions & perspectives

Conclusions

- We proved that the elasto-acoustic problem is well-posed in the continuous setting
- We proved and numerically validated *hp*-convergence results for a discontinuous Galerkin method on polyhedral meshes
- We used the method to simulate an example of physical interest

Perspectives

- Carrying out numerical computations in a 3D setting, using the code SPEED (http://speed.mox.polimi.it/)
- Considering the case of totally absorbing boundary conditions
- Deducing error estimates for the fully discrete problem
- Consider the more general case of a viscoelastic material response:

$$\boldsymbol{\sigma}(\boldsymbol{u}(\boldsymbol{x},t);t) = \mathbb{C}(\boldsymbol{x},0)\boldsymbol{\varepsilon}(\boldsymbol{u}(\boldsymbol{x},t)) - \int_0^t \frac{\partial \mathbb{C}}{\partial s}(\boldsymbol{x},t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(\boldsymbol{x},s))\,\mathrm{d}s$$

References I

P. F. ANTONIETTI, F. BONALDI, AND I. MAZZIERI,

A high-order discontinuous Galerkin approach to the elasto-acoustic problem, Preprint arXiv:1803.01351 [math.NA], submitted, 2018.

A. CANGIANI, Z. DONG, E. H. GEORGOULIS, AND P. HOUSTON,

hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes, SpringerBriefs in Mathematics, Springer International Publishing, 2017.

P. F. ANTONIETTI, P. HOUSTON, X. HU, M. SARTI, AND M. VERANI,

Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes,

Calcolo, 54 (2017), pp. 1169–1198.

S. MÖNKÖLA,

On the accuracy and efficiency of transient spectral element models for seismic wave problems,

Adv. Math. Phys., (2016).

$J. \ D. \ DE \ BASABE AND \ M. \ K. \ SEN,$

A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface,

Geophysical Journal International, 200 (2015), pp. 278-298.

E.	Во	na	ldi

References II

H. BARUCQ, R. DJELLOULI, AND E. ESTECAHANDY,

Characterization of the Fréchet derivative of the elasto-acoustic field with respect to Lipschitz domains, J. Inverse III-Posed Probl., 22 (2014), pp. 1–8.

H. BARUCQ, R. DJELLOULI, AND E. ESTECAHANDY,

Efficient dG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, Int. J. Numer. Meth. Engng, 98 (2014), pp. 747–780.

V. PÉRON,

Equivalent boundary conditions for an elasto-acoustic problem set in a domain with a thin layer,

ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 1431–1449.

B. FLEMISCH, M. KALTENBACHER, AND B. I. WOHLMUTH, *Elasto–acoustic and acoustic–acoustic coupling on non-matching grids*, Int. J. Numer. Meth. Engng, 67 (2006), pp. 1791–1810.

- D. KOMATITSCH, C. BARNES, AND J. TROMP,

Wave propagation near a fluid-solid interface: a spectral-element approach, Geophysics, 65 (2000), pp. 623–631.

Merci de votre attention

Application of Hille-Yosida

Let $\boldsymbol{w} = \dot{\boldsymbol{u}}, \phi = \dot{\varphi}$, and $\mathcal{U} = (\boldsymbol{u}, \boldsymbol{w}, \varphi, \phi)$. We introduce $\mathbb{H} = \boldsymbol{H}_D^1(\Omega_e) \times \boldsymbol{L}^2(\Omega_e) \times H_D^1(\Omega_a) \times L^2(\Omega_a),$

with scalar product

$$\begin{split} (\mathcal{U}_1, \mathcal{U}_2)_{\mathbb{H}} &= (\rho_e \zeta^2 \boldsymbol{u}_1, \boldsymbol{u}_2)_{\Omega_e} + (\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}_1), \boldsymbol{\varepsilon}(\boldsymbol{u}_2))_{\Omega_e} \\ &+ (\rho_e \boldsymbol{w}_1, \boldsymbol{w}_2)_{\Omega_e} + (\rho_a \boldsymbol{\nabla}\varphi_1, \boldsymbol{\nabla}\varphi_2)_{\Omega_a} + (c^{-2}\rho_a \phi_1, \phi_2)_{\Omega_a}. \end{split}$$

Application of Hille–Yosida

Let $\boldsymbol{w} = \dot{\boldsymbol{u}}, \phi = \dot{\varphi}$, and $\mathcal{U} = (\boldsymbol{u}, \boldsymbol{w}, \varphi, \phi)$. We introduce $\mathbb{H} = \boldsymbol{H}_D^1(\Omega_e) \times \boldsymbol{L}^2(\Omega_e) \times H_D^1(\Omega_a) \times L^2(\Omega_a),$

with scalar product

$$\begin{aligned} (\mathcal{U}_1, \mathcal{U}_2)_{\mathbb{H}} &= (\rho_e \zeta^2 \boldsymbol{u}_1, \boldsymbol{u}_2)_{\Omega_e} + (\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}_1), \boldsymbol{\varepsilon}(\boldsymbol{u}_2))_{\Omega_e} \\ &+ (\rho_e \boldsymbol{w}_1, \boldsymbol{w}_2)_{\Omega_e} + (\rho_a \boldsymbol{\nabla}\varphi_1, \boldsymbol{\nabla}\varphi_2)_{\Omega_a} + (c^{-2}\rho_a \phi_1, \phi_2)_{\Omega_a}. \end{aligned}$$

Then, we define the operator $A: D(A) \subset \mathbb{H} \to \mathbb{H}$ by

$$\begin{split} & A\mathcal{U} = \left(-\boldsymbol{w}, \ 2\zeta\boldsymbol{w} + \zeta^{2}\boldsymbol{u} - \rho_{e}^{-1}\mathbf{div}\,\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}), \ -\phi, \ -c^{2}\triangle\varphi\right) \quad \forall \mathcal{U} \in D(A), \\ & D(A) = \left\{\mathcal{U} \in \mathbb{H} : \boldsymbol{u} \in \boldsymbol{H}_{\mathbb{C}}^{\triangle}(\Omega_{e}), \ \boldsymbol{w} \in \boldsymbol{H}_{D}^{1}(\Omega_{e}), \ \varphi \in H^{\triangle}(\Omega_{a}), \ \phi \in H_{D}^{1}(\Omega_{a}); \\ & \left(\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}) + \rho_{a}\phi\boldsymbol{I}\right)\boldsymbol{n}_{e} = \mathbf{0} \text{ on } \Gamma_{\mathrm{I}}, \ \left(\boldsymbol{\nabla}\varphi + \boldsymbol{w}\right)\boldsymbol{\cdot}\boldsymbol{n}_{a} = 0 \text{ on } \Gamma_{\mathrm{I}}\right\} \end{split}$$

Application of Hille-Yosida

Let $\boldsymbol{w} = \dot{\boldsymbol{u}}, \phi = \dot{\varphi}$, and $\mathcal{U} = (\boldsymbol{u}, \boldsymbol{w}, \varphi, \phi)$. We introduce $\mathbb{H} = \boldsymbol{H}_D^1(\Omega_e) \times \boldsymbol{L}^2(\Omega_e) \times H_D^1(\Omega_a) \times L^2(\Omega_a),$

with scalar product

$$\begin{aligned} (\mathcal{U}_1, \mathcal{U}_2)_{\mathbb{H}} &= (\rho_e \zeta^2 \boldsymbol{u}_1, \boldsymbol{u}_2)_{\Omega_e} + (\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}_1), \boldsymbol{\varepsilon}(\boldsymbol{u}_2))_{\Omega_e} \\ &+ (\rho_e \boldsymbol{w}_1, \boldsymbol{w}_2)_{\Omega_e} + (\rho_a \boldsymbol{\nabla}\varphi_1, \boldsymbol{\nabla}\varphi_2)_{\Omega_a} + (c^{-2}\rho_a \phi_1, \phi_2)_{\Omega_a}. \end{aligned}$$

Then, we define the operator $A: D(A) \subset \mathbb{H} \to \mathbb{H}$ by

$$\begin{aligned} A\mathcal{U} &= \left(-\boldsymbol{w}, \ 2\zeta\boldsymbol{w} + \zeta^{2}\boldsymbol{u} - \rho_{e}^{-1}\mathbf{div}\,\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}), \ -\phi, \ -c^{2}\triangle\varphi\right) \quad \forall \mathcal{U} \in D(A), \\ D(A) &= \left\{\mathcal{U} \in \mathbb{H} : \boldsymbol{u} \in \boldsymbol{H}_{\mathbb{C}}^{\triangle}(\Omega_{e}), \ \boldsymbol{w} \in \boldsymbol{H}_{D}^{1}(\Omega_{e}), \ \varphi \in H^{\triangle}(\Omega_{a}), \ \phi \in H_{D}^{1}(\Omega_{a}); \\ & \left(\mathbb{C}\boldsymbol{\varepsilon}(\boldsymbol{u}) + \rho_{a}\phi\boldsymbol{I}\right)\boldsymbol{n}_{e} = \boldsymbol{0} \text{ on } \Gamma_{\mathrm{I}}, \ \left(\boldsymbol{\nabla}\varphi + \boldsymbol{w}\right) \cdot \boldsymbol{n}_{a} = 0 \text{ on } \Gamma_{\mathrm{I}} \right\}. \end{aligned}$$

Finally, let $\mathcal{F} = (\mathbf{0}, \rho_e^{-1} \mathbf{f}_e, 0, c^2 f_a).$

For
$$\mathcal{F} \in C^1([0,T];\mathbb{H})$$
 and $\mathcal{U}_0 \in D(A)$,
find $\mathcal{U} \in C^1([0,T];\mathbb{H}) \cap C^0([0,T];D(A))$ s.t.
$$\frac{\mathrm{d}\mathcal{U}}{\mathrm{d}t}(t) + A\mathcal{U}(t) = \mathcal{F}(t), \quad t \in (0,T],$$
$$\mathcal{U}(0) = \mathcal{U}_0.$$

F. Bonaldi

22 mars 2018