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Introduction

We are interested in the fourth order Schrödinger equation :

i∂tψ − γ∆2ψ + ∆ψ + |ψ|2σψ = 0, in R× RN (Mixed 4NLS)

where σ, γ > 0.
We focus essentially on standing wave solutions namely
solutions of the form

ψ(t, x) = eiαtu(x), for some α ∈ R.

This ansatz yields to the fourth-order semilinear elliptic
equation

γ∆2u−∆u + αu = |u|2σu, in RN. (4NLS)



Introduction

Some motivations.

A small fourth order dispersion has been introduced by
Karpman and Shagalov to regularize and stabilize solutions to
the classical nonlinear Schrödinger equation.

V.I. Karpman and A.G. Shagalov. Stability of solitons described
by nonlinear Schrödinger-type equations with higher-order
dispersion.
Phys. D, 144(1-2):194–210, 2000.



Introduction

First, let us consider the Schrödinger equation in arbitrary
dimension with a general pure power nonlinearity

i∂tψ+∆ψ+ |ψ|2σψ = 0, ψ(x, 0) = ψ0(x), (t, x) ∈ R×RN, (NLS)

where σ is a given positive real number. We have that
I all solutions to (NLS) exist globally in time and standing

waves are orbitally stable if σN < 2,
I finite time blow-up may appear and the standing wave

solutions become unstable if σN ≥ 2.



Introduction

For (Mixed 4NLS), Fibich, Ilan and Papanicolaou showed using
a combination of stability analysis and numerical simulations
that

I all solutions to (Mixed 4NLS) exist globally in time (see
also Ben Artzi-Koch-Saut) and standing wave solutions are
stable when σN < 4 (provided γ is small if 2 ≤ Nσ < 4),

I standing wave solutions are instable when σN ≥ 4.
Two observations :

I The case σ = 1 and N = 2 is now subcritical.
I Solutions blowing-up in finite time when σN ≥ 4 were

only recently proved to exist.



Existence of standing wave solutions for 4NLS

They are two natural ways to look for standing wave solutions
to (4NLS) :

I minimization under a L2 mass constraint.
I minimization under a L2σ+2 constraint.

I The L2 mass constraint is very natural with respect to the
time dependent equation (Mixed 4NLS) (the mass is a
conserved quantity).

I The L2σ+2 constraint is very natural from an elliptic PDE
point of view.

The L2σ+2 constraint which was studied by Bonheure and
Nascimento.
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Minimizing under a L2σ+2 constraint

We consider the following minimization problem

m = inf
u∈M

Jγ,α(u), (Min L2σ+2 fixed)

where
M = {u ∈ H2(RN) :

∫
RN
|u|2σ+2dx = 1},

and Jγ,α is the quadratic form defined by

Jγ,α(u) = γ

∫
RN
|∆u|2 dx +

∫
RN
|∇u|2 dx + α

∫
RN
|u|2 dx.



Minimizing under a L2σ+2 constraint

Two observations :
I When α, γ > 0, Jγ,α is the square of a norm on H2.
I If m is achieved by some u ∈M, then u weakly solves

γ∆2u−∆u + αu = m|u|2σu.

Then v = m
1

2σ u solves

γ∆2v−∆v + αv = |v|2σv.



Minimizing under a L2σ+2 constraint

Theorem (Bonheure, Nascimento)
Assume α, γ > 0 and σN < 4∗ = 4N/(N − 4)+. Then problem
(Min L2σ+2 fixed) has a nontrivial solution. Moreover, when
γα ≤ 1/4, this solution has a sign and is radially symmetric.



Minimizing under a L2σ+2 constraint

When α ≤ 1/4 (to simplify we take γ = 1), (4NLS) can be
rewritten as a cooperative system−∆u +

u
2

= v,

−∆v +
v
2

= |u|2σu + (
1
4
− α)u.

If we prove that u and v don’t change sign then a general result
of Busca and Sirakov implies that u and v are strictly radially
decreasing.



Minimizing under a L2σ+2 constraint

Let u be a solution to (Min L2σ+2 fixed). Define w ∈ H2 through

−∆w +
w
2

=
∣∣∣−∆u +

u
2

∣∣∣ .
Assume by contradiction that −∆u +

u
2

changes sign. From the

strong maximum principle, we have w > |u|. Then, we have

J1,α

(
w

‖w‖L2σ+2

)
=

∫
RN

(−∆w + w/2)2 dx− (1/4− α)

∫
RN

w2 dx

‖w‖2
L2σ+2

<

∫
RN

(−∆u + u/2)2 dx− (1/4− α)

∫
RN

u2 dx

‖u‖2
L2σ+2

which contradicts the minimality of u.
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Minimizing under a L2 mass constraint

Next, we consider the problem with fixed L2 constraint :

Iγ(µ) = inf
u∈Sµ

Eγ(u) (Min L2 fixed)

where
Sµ = {u ∈ H2(RN) :

∫
RN
|u|2 dx = µ}

and

Eγ(u) =
γ

2

∫
RN
|∆u|2 dx +

1
2

∫
RN
|∇u|2 dx− 1

2σ + 2

∫
RN
|u|2σ+2 dx.



Minimizing under a L2 mass constraint

If u achieves Iγ(µ), then u is a solution to

γ∆2u−∆u + αu = |u|2σu,

where α is the Lagrange multiplier

α =
1
µ

(∫
RN
|u|2σ+2 dx− γ

∫
RN
|∆u|2 dx−

∫
RN
|∇u|2 dx

)
.

Remark : not possible to ”scale out” α.



Minimizing under a L2 mass constraint: mass
subcritical case

Theorem (Bonheure, C, Dos Santos, Nascimento)

Assume γ > 0. If 0 < σN < 2, then Iγ(µ) is achieved for every
µ > 0. If 2 ≤ σN < 4, then there exist a critical mass µc(γ, σ) such
that

(i) Iγ(µ) is not achieved if µ < µc;
(ii) Iγ(µ) is achieved if µ > µc and σN = 2;

(iii) Iγ(µ) is achieved if µ ≥ µc and σN 6= 2;
lim
γ→0

µc(γ, σ) = 0.



Minimizing under a L2 mass constraint: mass
subcritical case

Sketch of the proof : thanks to Lions’ concentration
-compactness principle, one can prove that if Iγ(µ) < 0, then
sequences of minimizers to (Min L2 fixed) are pre-compact.
The main problem to prove that Iγ(µ) < 0 is the presence of
three terms in Eγ .



Minimizing under a L2 mass constraint: mass
subcritical case

Let uλ(x) = λ
N
2 u(λx). Then,

Eγ(uλ) =
γλ4

2

∫
RN
|∆u|2 dx +

λ2

2

∫
RN
|∇u|2 dx

− λσN

2σ + 2

∫
RN
|u|2σ+2.

Difficult to conclude when 2 ≤ σN < 4.
Main idea : use a 3 terms Gagliardo-Nirenberg interpolation
inequality.



Minimizing under a L2 mass constraint: mass critical
case

Theorem (Bonheure, C, Gou, Jeanjean)

Let σN = 4. There exists a µ∗N > 0 such that

Iγ(µ) := inf
u∈Sµ

Eγ(u) =

{
0, 0 < µ ≤ µ∗N,
−∞, µ > µ∗N,

For µ ∈ (0, µ∗N), (Min L2 fixed) has no solution and in particular
Iγ(µ) is not achieved.



Minimizing under a L2 mass constraint: mass
supercritical case

In order to find renormalized solutions when the energy is not
bounded from below, we consider the following modified
minimization problem

K(µ) = inf
u∈M(µ)

Eγ(u) (Min L2 fixed sup)

where

M(µ) = {u ∈ H2(RN)|‖u‖2
L2 = µ and Q(u) = 0},

and

Q(u) = γ

∫
RN
|∆u|2 dx +

1
2

∫
RN
|∇u|2 dx− σN

2σ + 2

∫
RN
|u|2σ+2 dx.



Minimizing under a L2 mass constraint: mass
supercritical case

Lemma (Bonheure, C, Gou, Jeanjean)

Let 4 < σN < 4∗, then E restricted toM(µ) is coercive and bounded
from below by a positive constant.

Lemma (Bonheure, C, Gou, Jeanjean)

Let 4 < σN < 4∗. There exists a Palais-Smale sequence
{un} ⊂ M(µ) for E restricted to S(µ) at the level K(µ).



Minimizing under a L2 mass constraint: mass
supercritical case

Theorem (Bonheure, C, Gou, Jeanjean)

Let 4 < σN < 4∗. Then there exists µN,σ > 0 such that for any
µ ∈ (0, µσ,N), (Min L2 fixed sup) has a solution u satisfying
Eγ(u) = K(µ). Moreover

µ1,σ = µ2,σ =∞,

and
µ3,σ =∞ if 4 < 3σ ≤ 6 = 2∗ = 2N/(N − 2).



Minimizing under a L2 mass constraint: mass
supercritical case

Sketch of the proof :

Lemma (Bonheure, C, Gou, Jeanjean)

Let {un} ⊂ M(µ) be a Palais-Smale sequence for E restricted to
M(µ). Then there exist uµ ∈ H2(RN) and a sequence {αn} ⊂ R
such that, up to translation and up to passing to a subsequence,

(i) un ⇀ uµ 6= 0 in H2(RN) as n→∞;
(ii) αn → αµ in R as n→∞;

(iii) γ∆2un −∆un + αnun − |un|2σun → 0 in H−2(RN) as n→∞;
(iv) γ∆2uµ −∆uµ + αµuµ = |uµ|2σuµ.
In addition, if αµ > 0 then ‖un − uµ‖H2 → 0 as n→∞.



Minimizing under a L2 mass constraint: mass
supercritical case

Lemma (Bonheure, C, Gou, Jeanjean)

If uµ is a solution to

γ∆2u−∆u + αµu = |u|2σu (4NLS)

with ‖uµ‖2
2 = µ > 0, there exists µN,σ > 0 such that αµ > 0 for any

µ ∈ (0, µN,σ). Moreover

µ1,σ = µ2,σ =∞,

and
µ3,σ =∞ if 4 < 3σ ≤ 6 = 2∗.
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Orbital stability: mass supercritical case

Definition
We say that a solution u ∈ H2(RN) to (Mixed 4NLS) is unstable by
blow-up in finite time if, for all ε > 0, there exists v ∈ H2(RN) such
that ‖v− u‖H2 < ε and the solution φ(t) to (Mixed 4NLS) with
initial data φ(0) = v blows up in finite time in the H2 norm.



Orbital stability: mass supercritical case

Theorem (Bonheure, C, Gou, Jeanjean)

Let 4 ≤ σN < 4∗, N ≥ 2 and σ ≤ 4. The standing waves associated
to radial ground states and renormalized solutions are unstable by
blow-up in finite time.



Orbital stability

Definition

Let θ(x, t) = eiαtU(x) be a standing wave of (Mixed 4NLS). We say
that θ is orbitally stable in H2 if, given ε > 0, there exists δ > 0 such
that if Φ0 ∈ H2 satisfies ‖Φ0 − U‖H2 < δ, then the solution Φ(t) of
(Mixed 4NLS) with initial data Φ0 exists for all t ≥ 0 and satisfies

d(Φ(t),ΩU ) < ε, for all t ≥ 0,

where

ΩU := {T1(θ)T2(r)U : θ, r ∈ R}

≈
{(

cos θ sin θ
− sin θ cos θ

)(
U(· − r)

0

)
: θ, r ∈ R

}
,

and
d(f , g) := inf

{
‖f − T1(θ)T2(r)g‖H2 : θ, r ∈ R

}
.



Orbital stability: mass subcritical case

Theorem (Bonheure, C, Dos Santos, Nascimento)

Let 0 < σN < 4. Suppose that u is a minimizer for (Min L2 fixed).
Then the standing wave ψ(t, x) = exp(iαt)u(x) is orbitally stable.

Idea of the proof : same strategy as Cazenave-Lions.



Orbital stability: mass subcritical case

Theorem (Bonheure, C, Dos Santos, Nascimento)
Let 0 < σN < 4. Suppose that u is a non-degenerate minimizer of
(Min L2σ+2 fixed) i.e. if v satisfies

γ∆2v−∆v + αv = (2σ + 1)|u|2σv,

then there exists ξ ∈ RN such that v(x) = ξ · ∇u(x), and that the
following condition holds

if v ∈ H2(RN) satisfies γ∆2v−∆v + αv = u, then
∫
RN

uv < 0.

Then the standing wave ψ(t, x) = exp(iαt)u(x) is orbitally stable.

Idea of the proof : construction of a Lyapunov function.



Orbital stability: mass subcritical case

Theorem (Bonheure, C, Dos Santos, Nascimento)

Let u be a minimizer of (Min L2σ+2 fixed). Then, u is
non-degenerate if

I N = 1 and γα ≤ 1/4,
I Nσ < 2∗, α > 0 and γ > 0 small enough.



Orbital stability: mass supercritical case

Theorem (Bonheure, C, Gou, Jeanjean)

Let 4 ≤ σN < 4∗, N ≥ 2 and σ ≤ 4. The standing waves associated
to radial ground states and renormalized solutions are unstable by
blow-up in finite time.



Orbital stability: mass supercritical case

Main ingredient : Boulenger and Lenzmann introduced a
localized virial to (Mixed 4NLS). Let ϕ : RN → R be a radial
function such that Djϕ ∈ L∞(RN), 1 ≤ j ≤ 6,

ϕ(r) :=


r2

2
for r ≤ 1

const. for r ≥ 10
, and ϕ′′(r) ≤ 1, for r ≥ 0.

Let R > 0, we set ϕR(r) := R2ϕ(
r
R

). For u ∈ H2(RN), we
defined the localized virial MϕR by

MϕR [u] := 2Im
∫
RN

ū∇ϕR∇u dx.



Orbital stability: mass supercritical case

Lemma (Boulenger, Lenzmann)
Let σN < 4∗,N ≥ 2, and R > 0. Suppose that
u(t) ∈ C([0,T); H2

rad(RN)) is a solution to (Mixed 4NLS). Then for
any t ∈ [0,T),

d
dt

MϕR [u(t)] ≤ 4NσEγ(u(t))− (2Nσ − 8)γ‖∆u(t)‖2
2 − (2Nσ − 4)‖∇u(t)‖2

2

+ O
(

1
R4 +

‖∇u(t)‖2
2

R2 +
‖∇u(t)‖σ2
Rσ(N−1) +

µ

R2

)
= 8Q(u(t)) + O

(
1

R4 +
‖∇u(t)‖2

2

R2 +
‖∇u(t)‖σ2
Rσ(N−1) +

µ

R2

)
.

Moreover, if σ ≤ 2, we have

d
dt

MϕR [u(t)] ≤ 8Q(u(t)) + 0(
1
ηR2 + η1/2), (1)

for, R ≥ 1 and 0 < η < 1.



Orbital stability: mass supercritical case
Sketch of the proof : Let u ∈ H2

rad(RN) be a ground state
solution. We can prove that there exists λ > 1 sufficiently close
to 1 such that v(r) = λN/4u(

√
λr) satisfies

Ẽα(v) < Ẽα(u), Q(v) < 0, I(v) < 0 and ‖u− v‖H2 ≤ ε,

where

Ẽα(u) =
γ

2
‖∆u‖2

2 +
1
2
‖∇u‖2

2 +
α

2
‖u‖2

2 −
1

2σ + 2
‖u‖2σ+2

2σ+2,

I(u) = γ‖∆u‖2
2 + ‖∇u‖2

2 + α‖u‖2
2 − ‖u‖2σ+2

2σ+2,

Q(u) = γ‖∆u‖2
2 +

1
2
‖∇u‖2

2 −
σN

2(2σ + 2)
‖u‖2σ+2

2σ+2.

Let φ(t) ∈ C([0,T); H2
rad(RN)) be the unique solution to

(Mixed 4NLS) with initial datum φ(0) = v, where T > 0 is the
maximum existence time to φ(t).



Orbital stability: mass supercritical case
First step: There exists a constant a > 0 (not depending on t)
such that, for all t ∈ [0,T),

Ẽα(φ(t)) < Ẽα(u), Q(φ(t)) < −a, and I(φ(t)) < 0.

Second step: There exist a constant δ > 0 such that

d
dt

MϕR [φ(t)] ≤ −δ‖∇φ(t)‖2
2 for t ∈ [0,T), (Virial)

and a t1 ≥ 0 such that

MϕR [φ(t)] < 0 for t ≥ t1.

Idea : consider two cases depending on the sign of

||∇φ(t)||22 −
4NσE(v)

µ(Nσ − 2)
.



Orbital stability: mass supercritical case
Final step: Suppose by contradiction that T =∞, then
integrating (Virial) on [t1, t], we have that

MϕR [φ(t)] ≤ −δ
∫ t

t1

‖∇φ(s)‖2
2ds.

Now using Cauchy-Schwarz’s inequality, we get

|MϕR [φ(t)]| ≤ 2‖∇ϕR‖∞‖φ(t)‖2‖∇φ(t)‖2 ≤ C‖∇φ(t)‖2.

Thus for some τ > 0,

MϕR [φ(t)] ≤ −τ
∫ t

t1

|MϕR [φ(s)]|2ds.

Setting z(t) :=
∫ t

t1
|MϕR [φ(s)]|2ds, this rewrites as

z′(t) ≥ τ 2z(t)2.



Thank you for your attention.
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