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Main issue

Goal : construct precise blow-up solutions to

(vB) ∂tu + u∂xu − ∂yyu = 0, (x , y) ∈ R, u : [0,T )× R2 → R.

Motivations :

- Simple toy model, everything can be computed explicitely.

- How does an additional effect affects a blow-up dynamics it does not prevent ?

- Mixed hyperbolic/parabolic problem.

-
Anisotropic singularities are still poorly understood, see also [C.-Merle-Raphaël,
preprint 2017] and [M-R-Szeftel, preprint 2017] for the semi-linear heat equation
in high dimensions.

- Same goal for Prandtl’s equations.
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Relation with blow-up for Prandtl’s equations

Prandtl’s equations on the upper half plane (x , y) ∈ R× [0,+∞) with vanishing flow
at infinity :

(Prandtl)

{
∂tu + u∂xu + v∂yu − ∂yyu = 0, ux + vy = 0,
u(t, x , 0) = 0 = v(t, x , 0)

admit solutions becoming singular in finite time, but the precise structures of the sin-
gularities are unknown.

Namely, if u solves (Prandtl) is odd in x , the trace ξ(t, y) := −ux (t, 0, y) solves on the
vertical ray y ∈ [0,+∞) :

(∗) ξt − ξ2 +

(∫ y

0
ξ(t, ỹ)dỹ

)
ξy − ξyy = 0, ξ(0) = 0.

[E-Engquist CPAM 1997] showed that some solutions to (∗) blow up in finite time,
see also [Kukavica-Vicol-Wang Adv. Math. 2017, Galaktionov-Vazquez Adv. Differential
Equ. 1999]. Seminal numerical results by [Van-Dommelen-Shen J. Comput. Phys. 1980].
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Relation with blow-up for Prandtl’s equations

Theorem [Galaktionov-Vazquez Adv. Differential Equ. 1999,
C.-Ghoul-Ibrahim-Masmoudi, work under progress]

There exists a stable blow-up behaviour for (∗) with solutions such that as t → T :

ξ(t, y) =
1
λ(t)

Q
(

(y − y(t))µ(t)
√
λ(t)

)
+ ε(t, y).

where, for some η > 0,

Q(Z) = cos2
(
Z

2

)
1 {−π ≤ Z ≤ π} ,

λ(t) ∼ (T − t), µ→ µ∗ > 0, y(t) ∼
π

√
T − t

, ‖ε‖L∞ . (T − t)−1+η

However, the solution to (Prandtl) might blow up before the time T associated to the
reduced equation. What happens outside the vertical axis {x = 0} ? What is the role of
the reduced equation, i.e. of the infinitesimal behaviour near the vertical axis ?

We solved this problem for the simplified model (vB).
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Self-similarity in shocks for the inviscid Burgers equation

(vB) for solutions independent on the transversal variable u(t, x , y) = U(t, x) reduces
to the inviscid Burgers equation

(Burgers) Ut + UUx = 0, U(0, x) = U0(x)

for which some solutions become singular in finite time. We now explain the role of
self-similarity in this singularity formation.

There holds the formula using the characteristics

U(t, x) = U0(Φ−1
t (x)), Φt(x̃) = x̃ + tU0(x̃)

and ∂xU → +∞ becomes singular at time T = (−min(∂xU0))−1 (shock formation).

Invariances : If U is a solution to (Burgers) then so is

µ

λ
U

(
t − t0

λ
,
x − x0 − ct

µ

)
+ c.

Wlog if U blows up then we assume

(HP) T = 0, Ux (−1, x) minimal at 0 with Ux (−1, 0) = −1 and U(−1, 0) = 0.

Self-similarity refers to such solutions with a non-trivial stabilizer

Gs :=

{
(λ, µ) ∈ (0,+∞)2,

µ

λ
U

(
t

λ
,
x

µ

)
= U(t, x)

}
6= {(1, 1)}.
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Self-similarity in shocks for Burgers equation

Proposition [Invariant blow-up solutions]

U ∈ C1 solves (Burgers), satisfies (HP), U 6= x/t, and Gs is non-trivial if and only if
one the following holds.

(i) Self-similarity (SS) : There exists i > 0 with

U(t, x) = µ−1(−t)
1
2i Ψi

(
µ

x

(−t)1+ 1
2i

)
, µ > 0,

where Ψi is a profile which is analytic if i ∈ N∗, else C1+2i .

(ii) Discrete self-similarity (DSS) : There exists i > 0, λ > 1 such that

U(t, x) = λ
k
2i U

(
t

λk
,

x

λk(1+ 1
2i )

)
, ∀k ∈ Z

and U /∈ C1+2i .
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Self-similarity in shocks for Burgers equation

Proposition [The family (Ψi )i∈N∗ ]

Ψi : R→ R is odd, analytic and solves the stationary self-similar equation :

−
1
2i

Ψi +

(
1 +

1
2i

)
X∂X Ψi + Ψi∂X Ψi = 0,

and the implicit equation :
X = −Ψi −Ψ2i+1

i ,

with behaviour :

Ψi (X ) =
X→0

−X + X 2i+1 + ..., Ψi (X ) ∼
X→−∞

|X |
1

2i+1 ,

and in particular the fundamental one is :

Ψ1(X ) =

(
−
X

2
+

(
1
27

+
X 2

4

) 1
2
) 1

3

+

(
−
X

2
−
(

1
27

+
X 2

4

) 1
2
) 1

3

.

They are the attractors of non-degenerate smooth singular solutions. Dynamics of per-
turbations can be studied explicitly.
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Behaviour on the vertical axis

Assume u solves (vB) is odd in x and even in y and such that

∂jxu0(0, y) = 0 for j = 2, ..., 2i

and define
ξ(t, y) := −∂xu(t, 0, y), ζ(t, y) = ∂2i+1

x u(t, 0, y).

Then u remains odd in x and even in y , with

∂jxu0(0, y) = 0 for j = 2, ..., 2i ,

and {
(1) ξt − ξ2 − ξyy = 0,
(2) ζt − (2i + 2)ξζ − ζyy = 0.

(1) is the 1-dimensional semi-linear heat equation. (2) is a linearly forced heat equation.
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Behaviour on the vertical axis

Theorem [Giga-Kohn CPAM 1985, Herrero-Velazquez Ann. Sc. Norm. Super. Pisa Cl.
Sci. 1992, Bricmont-Kupiainen Nonlinearity 1994, Merle-Zaag Duke Math. J. 1997]

There exists an open set of solutions to

ξt − ξ2 − ξyy = 0

that blow up as t → T with

ξ =
1

T − t

1

1 + y2

8(T−t)| log(T−t)|

+OL∞(R)

(
1

(T − t)| log(T − t)|η

)
, η > 0, as t → T ,

and instable solutions for each k ∈ N, k ≥ 2 such that

ξ =
1

T − t

1

1 + ay2k

(T−t)

+OL∞(R)


(

(T − t)
1
2k + |y |

) 1
2

T − t + y2k

 , a > 0, as (t, y)→ (T , 0).

(optimal bound in the second case by [C.-Ghoul-Masmoudi, preprint 2018]).
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Main result

Main Theorem 1 [C.-G.-M., preprint 2018]

For any i ∈ N∗ and µ > 0, there exists an open set of solutions to (vB) that are smooth
and compactly supported, odd in x and even in y , blowing up in finite time T with

u = (T−t)
1
2i

µ

(
1 + y2

8(T−t)| log(T−t)|

) 1
2i

Ψi

 1(
1+ y2

8(T−t)| log(T−t)|

)1+ 1
2i

µx

(T−t)
1+ 1

2i


+(T − t)

1
2i ũ(X ,Z)

where X = x/(T − t)1+1/(2i), Z = y/
√

(T − t)| log(T − t)| and

ũ → 0 in C1 on compact sets

and ∥∥∥∂x ((T − t)
1
2i ũ(X ,Z)

)∥∥∥ . (T − t)−1| log(T − t)|−η , η > 0.
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Main result

Main Theorem 2 [C.-G.-M., preprint 2018]

For any i , k ∈ N∗, k ≥ 2, and a, µ > 0, there exist solutions to (vB) that are smooth
and compactly supported, odd in x and even in y , blowing up in finite time T with

u = (T−t)
1
2i

µ

(
1 + ay2k

(T−t)

) 1
2i

Ψi

 1(
1+ ay2k

(T−t)

)1+ 1
2i

µx

(T−t)
1+ 1

2i


+(T − t)

1
2i ũ(X ,Z)

where X = x/(T − t)1+1/(2i), Z = y/(T − t)1/(2k) and

ũ → 0 in C1 on compact sets

and ∥∥∥∂x ((T − t)
1
2i ũ(X ,Z)

)∥∥∥ . (T − t)−1+η , η > 0.
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Proof, Renormalisation

For simplicity :
i = 1, k = 2, a = 1, µ = 1,

⇒ profile (T − t)
1
2

(
1 +

y4

(T − t)

) 1
2

Ψ1

 1(
1 + y4

(T−t)

) 3
2

x

(T − t)
3
2

 .
We zoom at the blow-up using the self-similar variables :

X =
x

(T − t)
3
2
, Y =

y

(T − t)
1
2
, Z =

y

(T − t)
1
4
, s = − log(T − t)

v(s,X ,Y ) = (T − t)−
1
2 u(t, x , y), f (s,Y ) = −∂X v(s, 0,Y ), g(s,Y ) = ∂3

X v(s, 0,Y ).

Then v solves

(vB′) ∂sv −
1
2
v +

3
2
X∂X v +

1
2
Y ∂Y + v∂X v − ∂YY v = 0.
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Proof, Precise behaviour on the vertical axis

Proposition

Given 0 < T � 1 small enough (equivalently s0 � 1 large enough), there exists a
solution (f , g) to{

(1′) ∂s f + f + Y
2 ∂Y f − f 2 − ∂YY f = 0,

(2′) ∂sg + 4g + Y
2 ∂Y g − 4fg − ∂YY g = 0,

such that
f =

1
1 + Z4 + f̃ , g =

6
(1 + Z4)4

+ g̃ ,

where (which propagates for derivatives)

|f̃ | .
e−

1
16 s(1 + |Z |)

1
2

(1 + |Z |)4
, |g̃ | .

e−
1
16 s(1 + |Z |)

1
2

(1 + |Z |)16 .
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Proof, Leading order profile

Once the behaviour of ∂X v and ∂3
X v on the vertical axis {X = 0} is known, how to

extend the solution in 2d ? In Z variables the equation for v reads

∂sv −
1
2
v +

3
2
X∂X v +

1
4
Z∂Z v + v∂X v − e−

s
2 ∂ZZ v = 0.

with asymptotic stationary equation

−
1
2
v +

3
2
X∂X v +

1
4
Z∂Z v + v∂X v = 0.
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Proof, Leading order profile

Proposition

The asymptotic stationary equation admits the solution

Θ = (1 + Z4)
1
2 Ψ1

(
X

(1 + Z4)
3
2

)

and the linearised operator

L = −
1
2

+
3
2
X∂X +

1
4
Z∂Z + ∂X Θ + Θ∂X

admits the eigenvalues

Lψj,` =

(
j

2
+
`

4
−

3
2

)
ψj,`, ψj,` = Z `(1 + Z4)

j
2−1

Ψj
1

(
X

(1+Z4)
3
2

)
1 + 3Ψ2

1

(
X

(1+Z4)
3
2

)
and the maximum principle-type estimate∥∥∥∥ e−Lsε0ψj,`

∥∥∥∥
L∞(R2)

≤ e
−
(

j
2 + `

4−
3
2

)
s
∥∥∥∥ ε0

ψj,`

∥∥∥∥
L∞(R2)

.
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Proof, Approximate blow-up profile

We take as approximate blow-up profile for 0 < δ � 1 :

Q = χ
|Y |≤δe

s
2

Θ̃ + (1− χ
|Y |≤δe

s
2

)Θe

where for the functions f and g previously studied :

Θ̃ = µ−1(s,Y )f −
1
2 (s,Y )Ψ1

(
µ(s,Y )f

3
2 (s,Y )X

)
, µ(s,Y ) =

(
g(s,Y )

6f 4(s,Y )

) 1
2
,

Θe =

(
−f (s,Y )X +

g(s,Y )

6
X 3
)
e
−
(

X
(1+Z6)

4
)
.

We take the Ansatz for the solution

v = Q + ε, then ∂jX ε(s, 0,Y ) = 0 for j = 0, 1, 2, 3, 4.
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Proof, Bootstrap

Let the vector field

A =

(
3
2
X + (1 + Z4)

3
2 Ψ1

(
X

(1 + Z4)
3
2

))
∂X (A ∼ X∂X ).

Proposition

One can bootstrap the estimates for 0 < κ� 1, q � 1, integers 0 ≤ j1 + j2 ≤ 2 :(∫
R2

((∂j1Z Aj2ε)2q

ψ2q
4,0(X ,Z)

dXdY

|X |〈Y 〉

) 1
2q

. e−( 1
2−κ)s ,

and for 0 ≤ j1 + j2 ≤ 2 and j2 ≥ 1 :(∫
R2

(((Y ∂j1Y )Aj2ε)2q

ψ2q
4,0(X ,Z)

dXdY

|X |〈Y 〉

) 1
2q

. e−( 1
2−κ)s .

Note that ψ4,0 ∼ X 4 as X → 0 hence the need of the cancellation ∂jX ε = 0 for
j = 0, 1, 2, 3, 4. This yields pointwise estimate thanks to the Sobolev embedding

‖u‖2q
L∞(R2)

≤ C(q)

(∫
R2

u2q dXdY

|X |〈Y 〉
+

∫
R2

(X∂Xu)2q
dXdY

|X |〈Y 〉
+

∫
R2

(〈Y 〉∂Y u)2q
dXdY

|X |〈Y 〉

)
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Proof, Bootstrap

Main ingredients of the bootstrap analysis :

-
The approximate profile Q generates an error which vanishes on the axis {X = 0}
up to order 4. Anisotropic weighted estimates are possible thanks to the analysis
performed previously on the vertical axis.

- To take derivatives : A commutes with the leading order transport operator ∂s +L.
∂Z and Y ∂Y commute up to well-localised remainders involving A.

- There holds the following linear estimate if u and R solve

us −
1
2
u +

3
2
X∂Xu +

1
2
Y ∂Y u + ∂X Θu + Θ∂Xu − ∂YY u = R,

d

ds

(
1
2q

∫
R2

u2q

ψ2q
j,0(X ,Z)

dXdY

|X |〈Y 〉

)

≤ −
(
j − 3
2
−

C

q

)∫
R2

u2q

ψ2q
j,0(X ,Z)

dXdY

|X |〈Y 〉
−

2q − 1
q2

∫ |∂Y (uq)|2

ψ2q
j,0(X ,Z)

dXdY

|X |〈Y 〉

+

∫
u2q−1R

ψ2q
j,0(X ,Z)

dXdY

|X |〈Y 〉
.
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Conclusion

- Smooth enough non-degenerate shock formations of Burgers equation Ut+UUx =
0 are self-similar, and everything can be computed easily explicitely.

-

Some singularities of Burgers with transversal viscosity ut+uux−uyy = 0 are given
by a backward self-similar solution of Burgers equation along the x variable, whose
two scaling parameters depend on the transversal variable y , and evolve according
to a parabolic system including the well-known semi-linear heat equation. The
leading order blow-up profile is explicit and anisotropic.

- The remaining part of the solution having enough cancellations on the vertical
axis is damped and sent to infinity in renormalised variables in an anisotropic way.

- Model for connexions between self-similar blow-ups behaviours.

- Hope for description of singularities of Prandtl’s equations, for the moment precise
information for reduced equations are obtained.
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Thank you for your attention ! !
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