Analyse numérique avec estimation d'erreur pour l'équation de Korteweg-de Vries et le système *abcd*

Cosmin Burtea¹, Clémentine Courtès², Frédéric Lagoutière¹, Frédéric Rousset³

Journées Jeunes EDPistes 2018, Nancy, le 23 mars 2018

¹ICJ, Université Lyon 1, ²IRMA, Université de Strasbourg, D > ³LMO, Université Paris-Sud Clémentine Courtès (IRMA, Strasbourg) Analyse numérique pour KdV et le système abcd JEF2018, le 23 mars 2018 1 / 25

Introduction : modélisation des vagues de faible amplitude Modélisation

- ▶ Fluide incompressible, irrotationnel
- Surface libre : η avec $A = \max \eta(t, x)$
- ► Hauteur de l'eau au repos : H
- ► w_{θ} vitesse du fluide à la hauteur θH pour $0 < \theta < 1$

A (1) > A (2) > A

Introduction : modélisation des vagues de faible amplitude Modélisation

- ▶ Fluide incompressible, irrotationnel
- Surface libre : η avec $A = \max \eta(t, x)$
- ► Hauteur de l'eau au repos : H
- ► w_{θ} vitesse du fluide à la hauteur θH pour $0 \le \theta \le 1$

• • • • • • • • • • • •

Hypothèses des faibles amplitudes en eau peu profonde

- Paramètre de faible non linéarité $\epsilon = A/H \ll 1$
- Paramètre de faible profondeur $\mu={\cal H}^2/\lambda^2\ll 1$
- Hypothèse de Boussines
q $\epsilon \approx \mu$

Introduction : modélisation des vagues de faible amplitude Modélisation

- ▶ Fluide incompressible, irrotationnel
- Surface libre : η avec $A = \max \eta(t, x)$
- ► Hauteur de l'eau au repos : H
- ► w_{θ} vitesse du fluide à la hauteur θH pour $0 \le \theta \le 1$

Hypothèses des faibles amplitudes en eau peu profonde

$$\epsilon = A/H \ll 1$$
 $\mu = H^2/\lambda^2 \ll 1$ $\epsilon \approx \mu$

En négligeant les termes en $\mathcal{O}(\epsilon^2)$ [Bona, Chen, Saut '02] obtiennent le système *abcd*

$$\begin{cases} \partial_t \eta - \mu \mathbf{b}_{\theta} \partial_x^2 \partial_t \eta + \partial_x w_{\theta} + \mathbf{a}_{\theta} \mu \partial_x^3 w_{\theta} + \epsilon \partial_x (\eta w_{\theta}) = 0, \\ \partial_t w_{\theta} - \mu \mathbf{d}_{\theta} \partial_x^2 \partial_t w_{\theta} + \partial_x \eta + \mathbf{c}_{\theta} \mu \partial_x^3 \eta + \epsilon \partial_x \left(\frac{w_{\theta}^2}{2}\right) = 0, \end{cases} \text{ avec } \mathbf{a}_{\theta} + \mathbf{b}_{\theta} + \mathbf{c}_{\theta} + \mathbf{d}_{\theta} = \frac{1}{3} \end{cases}$$

<

A (1) > A (2) > A

Introduction : modélisation des vagues de faible amplitude Modélisation

- ▶ Fluide incompressible, irrotationnel
- Surface libre : η avec $A = \max \eta(t, x)$
- ► Hauteur de l'eau au repos : H
- ▶ w_{θ} vitesse du fluide à la hauteur θH pour $0 \le \theta \le 1$

Hypothèses des faibles amplitudes en eau peu profonde

$$\epsilon = A/H \ll 1$$
 $\mu = H^2/\lambda^2 \ll 1$ $\epsilon \approx \mu$

En négligeant les termes en $\mathcal{O}(\epsilon^2)$ [Bona, Chen, Saut '02] obtiennent le système abcd

$$\begin{cases} \partial_t \eta - \mu \mathbf{b}_{\theta} \partial_x^2 \partial_t \eta + \partial_x w_{\theta} + \mathbf{a}_{\theta} \mu \partial_x^3 w_{\theta} + \epsilon \partial_x (\eta w_{\theta}) = 0, \\ \partial_t w_{\theta} - \mu \mathbf{d}_{\theta} \partial_x^2 \partial_t w_{\theta} + \partial_x \eta + \mathbf{c}_{\theta} \mu \partial_x^3 \eta + \epsilon \partial_x \left(\frac{w_{\theta}^2}{2}\right) = 0, \end{cases} \quad \text{avec } \mathbf{a}_{\theta} + \mathbf{b}_{\theta} + \mathbf{c}_{\theta} + \mathbf{d}_{\theta} = \frac{1}{3}.\end{cases}$$

[Lannes '13] En supposant la propagation unilatérale, nous pouvons déduire du système *abcd* l'équation de **Korteweg-de Vries**

$$\partial_t u + \epsilon \partial_x \left(\frac{u^2}{2}\right) + \mu \partial_x^3 u = 0.$$

Sommaire

Ordre de convergence pour l'équation de KdV

3 Analyse numérique du système abcd

イロト イヨト イヨト イ

- Problème de Cauchy et régularité
- Schéma numérique utilisé

2 Ordre de convergence pour l'équation de KdV

3 Analyse numérique du système abcd

イロト イポト イヨト イヨー

1. Problème de Cauchy et régularité

Nous considérons le problème de Cauchy suivant

$$\begin{cases} \partial_t u + \partial_x \left(\frac{u^2}{2}\right) + \partial_x^3 u = 0, \qquad (t, x) \in [0, T] \times \mathbb{R}, \\ u_{|_{t=0}}(x) = u_0(x), \qquad x \in \mathbb{R}. \end{cases}$$
(KdV)

< □ > < □ > < □ > < □ > < □ >

1. Problème de Cauchy et régularité

Nous considérons le problème de Cauchy suivant

$$\begin{cases} \partial_t u + \partial_x \left(\frac{u^2}{2}\right) + \partial_x^3 u = 0, \qquad (t, x) \in [0, T] \times \mathbb{R}, \\ u_{|_{t=0}}(x) = u_0(x), \qquad x \in \mathbb{R}. \end{cases}$$
(KdV)

Théorème ([Bourgain '93], [Kenig, Ponce, Vega '93])

- Soit s ≥ 0 et u₀ ∈ H^s(ℝ), alors il existe une unique solution globale u telle que pour tout T ≥ 0, u ∈ 𝒞([0, T], H^s).
- De plus, il existe $\kappa_s > 0$ et $C_s > 0$, tels que, pour tout $T \ge 0$

$$\blacktriangleright \sup_{[0,T]} \|u(t)\|_{H^s} \leq C_s e^{\kappa_s T} \|u_0\|_{H^s},$$

 $||\partial_{x} u||_{L^{4}([0,T],L^{\infty}(\mathbb{R}))} \leq C_{3/4} e^{\kappa_{3/4} T} ||u_{0}||_{H^{\frac{3}{4}}(\mathbb{R})}, \quad si \ s \geq \frac{3}{4}.$

Remarque : En terme de régularité de u_0 , ce n'est pas le meilleur résultat qui existe mais c'est celui qui assure une majoration de la solution dans $L^4([0, T], W^{1,\infty}(\mathbb{R}))$. (Par exemple [Colliander *et al.* '03] ont prouvé l'existence globale dans $\mathscr{C}([0, T], H^s(\mathbb{R}))$ pour $u_0 \in H^s(\mathbb{R})$ avec s > -3/4).

- Problème de Cauchy et régularité
- Schéma numérique utilisé

2 Ordre de convergence pour l'équation de KdV

3 Analyse numérique du système abcd

イロト イポト イヨト イヨー

État de l'art : convergence pour l'équation de KdV

- Schémas aux différences finies :
 - [Zabusky, Kruskal '65] : stabilité formelle,
 - [Vliegenthart '71] : justification rigoureuse de la condition de stabilité (sans estimation de convergence),
 - ▶ [Winther '80] : estimations d'énergie (pour une donnée très régulière),
 - [Holden, Koley, Risebro '15] : convergence sous condition de Courant-Friedrichs-Lewy forte (par la suite, condition CFL), sans estimation d'ordre de convergence.

• Autres méthodes numériques :

- Schémas symplectiques basés sur des différences finies compactes [Kanazawa, Matsuo, Yaguchi '12] ...
- Schémas de splitting [Holden, Karlsen, Risebro, Tao '11], [Holden, Lubich, Risebro, '13] ...
- Méthodes spectrales [Nouri, Sloan '89] …
- Éléments finis/méthode de Galerkin [Bona, Chen, Karakashian, Xing '13] ...

Notations : Schéma numérique

• Opérateurs discrets :

$$D_{-}(v)_{j}^{n} = \frac{v_{j}^{n} - v_{j-1}^{n}}{\Delta x}, \quad D_{+}(v)_{j}^{n} = \frac{v_{j+1}^{n} - v_{j}^{n}}{\Delta x}, \quad D_{c}(v)_{j}^{n} = \frac{v_{j+1}^{n} - v_{j-1}^{n}}{2\Delta x}$$
$$D_{+}D_{-}(v)_{j}^{n} = \frac{v_{j+1}^{n} - 2v_{j}^{n} + v_{j-1}^{n}}{\Delta x^{2}}, \quad D_{+}D_{+}D_{-}(v)_{j}^{n} = \frac{v_{j+2}^{n} - 3v_{j+1}^{n} + 3v_{j}^{n} - v_{j-1}^{n}}{\Delta x^{3}}.$$

• Schéma numérique :

< ロ > < 回 > < 回 > < 回 > < 回 >

Notations : Schéma numérique

• Opérateurs discrets :

$$D_{-}(v)_{j}^{n} = rac{v_{j}^{n} - v_{j-1}^{n}}{\Delta x}, \quad D_{+}(v)_{j}^{n} = rac{v_{j+1}^{n} - v_{j}^{n}}{\Delta x}, \quad D_{c}(v)_{j}^{n} = rac{v_{j+1}^{n} - v_{j-1}^{n}}{2\Delta x}.$$

$$D_{+}D_{-}(v)_{j}^{n} = rac{v_{j+1}^{n} - 2v_{j}^{n} + v_{j-1}^{n}}{\Delta x^{2}}, \quad D_{+}D_{+}D_{-}(v)_{j}^{n} = rac{v_{j+2}^{n} - 3v_{j+1}^{n} + 3v_{j}^{n} - v_{j-1}^{n}}{\Delta x^{3}}.$$

• Schéma numérique : $\forall (n,j) \in \llbracket 0,N \rrbracket imes \mathbb{Z}$,

$$\begin{cases} \frac{v_j^{n+1} - v_j^n}{\Delta t} + D_c \left(\frac{v^2}{2}\right)_j^n + \theta D_+ D_+ D_- (v)_j^{n+1} \\ + (1-\theta) D_+ D_+ D_- (v)_j^n = \frac{\tau \Delta x}{2} D_+ D_- (v)_j^n, \\ v_j^0 = \frac{1}{\Delta x} \int_{x_j}^{x_{j+1}} u_0(y) dy. \end{cases}$$

– Schéma de Rusanov pour la partie non linéaire (équation de Burgers)
 – θ-Schéma à droite pour la partie dispersive (équation_d'Airy)

Notations : Erreur de convergence

- Objectif : Étudier le taux de convergence du schéma aux différences finies
- Définition : L'erreur de convergence est définie par : $\forall (n,j) \in [\![0,N]\!] \times \mathbb{Z}$, avec $N = \lfloor \frac{T}{\Delta t} \rfloor$ $e_j^n = v_j^n - \bar{u}(t^n, x_j)$, où $\bar{u}(t,x) = \frac{1}{\Delta x \Delta t} \int_{t^n}^{t^{n+1}} \int_{x_i}^{x_{j+1}} u(s, y) dy ds$.
- Espace fonctionnel discret : Nous étudions la convergence dans l'espace discret ℓ[∞]([[0, N]], ℓ²_Δ(ℤ)), dont la norme est

$$|e||_{\ell^{\infty}\ell^{2}_{\Delta}} = \sup_{n \in \llbracket 0, N \rrbracket} ||e^{n}||_{\ell^{2}_{\Delta}} = \sup_{n \in \llbracket 0, N \rrbracket} \sqrt{\sum_{j \in \mathbb{Z}} \Delta x |e^{n}_{j}|^{2}}.$$

• Définition : Le taux de convergence est le réel α tel que $||e||_{\ell^{\infty}\ell^2_{\Delta}} \leq C\Delta x^{\alpha}$.

Équation de KdV : non linéarité et dispersion

Ordre de convergence pour l'équation de KdV

- Convergence pour $u_0 \in H^s(\mathbb{R})$ avec $s \geq rac{3}{4}$
- Preuve : les grandes étapes

3 Analyse numérique du système abcd

• • • • • • • • • • • • • •

1. Convergence pour $u_0 \in H^s(\mathbb{R})$ avec $s \geq \frac{3}{4}$ Théorème ([C., Lagoutière, Rousset]) Pour tout T > 0 et $u_0 \in H^s(\mathbb{R})$, $s \geq \frac{3}{4}$, choisissons τ tel que $\sup ||u(t, \cdot)||_{L^{\infty}(\mathbb{R})} < \tau$.

So it $\beta_0 \in]0,1[$ et $\theta \in [0,1]$, il existe $\omega_0 > 0$ tel que, pour tout Δt et $\Delta x \leq \omega_0$ tels que

 $t \in [0, T]$

$$\left\{ egin{array}{ll} 4(1-2 heta)rac{\Delta t}{\Delta x^3} \leq 1-eta_0 & extstyle i heta < rac{1}{2}, & (\textit{CFL dispersive}), \ \left[au+rac{1}{2}
ight] rac{\Delta t}{\Delta x} \leq 1-eta_0 & extstyle i heta \geq rac{1}{2}, & (\textit{CFL hyperbolique}) \end{array}
ight.$$

alors, l'erreur de convergence est majorée par

• $si \ s \ge 6$ • $si \ s \ge 6$ • $si \ 3 \le s \le 6$ • $si \ 3 \le s \le 6$ • $si \ 3 \le s \le 6$ • $si \ \frac{3}{4} \le s < 3$ • $si \ \frac{3}{4} \le c(T, ||u_0||_{H^s(\mathbb{R})})\Delta x^{\frac{5}{6}},$ • $si \ \frac{3}{4} \le c(T, ||u_0||_{H^s(\mathbb{R})})\Delta x^{\frac{5}{6}},$

Ordre de convergence en fonction de la régularité de Sobolev

Figure: Ordre de convergence en fonction de la régularité de la donnée initiale

< (17) × <

Résultats numériques

• Paramètres :

- Schéma implicite $\theta = 1$, (condition CFL de type hyperbolique),
- Une donnée initiale périodique sur [0, L] avec L = 50 et T = 0.1,
- ▶ Nombre de mailles en espace *J* ∈ [1600, 3200, 6400, 12800, 25600, 51200].

• Calcul de l'erreur numérique :

$$r = \frac{\log\left(E_J\right) - \log\left(E_{2J}\right)}{\log(2)},$$

où E_J correspond à l'erreur $\ell^{\infty}([0, N]], \ell^2_{\Delta}(\mathbb{Z}))$ entre la solution calculée avec J mailles en espace et la solution exacte.

calculée avec 2J mailles en espace.

Résultats numériques : $u_0 \in H^s(\mathbb{R})$ avec $0 \leq s$

Fonction dans $H^{s}(\mathbb{R})$		Fonction dans $H^4(\mathbb{R})$		
avec $s < \frac{1}{2}$ (fonction indicatrice)				
erreur	ordre	erreur	ordre	
$\ell^{\infty}(0, T, \ell^{2}_{\Lambda}(\mathbb{Z}))$	numérique	$\ell^{\infty}(0, T, \ell^{2}_{\Lambda}(\mathbb{Z}))$	numérique	
$1,0567.10^{-2}$		$4,6454.10^{-3}$		
9,8843.10 ⁻³	0.0964	$2,8109.10^{-3}$	0.72476	
9, 2992.10 ⁻³	0.0880	$1,7147.10^{-3}$	0.71307	
8,7490.10 ⁻³	0.0879	$1,0892.10^{-3}$	0.65474	
8,2289.10 ⁻³	0.0885	$6,8793.10^{-4}$	0.66290	
$7,7468.10^{-3}$	0.0871	$4,3185.10^{-4}$	0.67172	

э

Équation de KdV : non linéarité et dispersion

Ordre de convergence pour l'équation de KdV

- Convergence pour $u_0 \in H^s(\mathbb{R})$ avec $s \geq rac{3}{4}$
- Preuve : les grandes étapes

3 Analyse numérique du système abcd

< □ > < 同 > < 回 > < Ξ > < Ξ

- 2. Preuve : les grandes étapes : $u_0 \in H^s(\mathbb{R})$ avec $s \ge 6$ $\mathcal{A}_{\theta} = I + \theta \Delta t D_+ D_- D_-$
 - Étape 1 Équation vérifiée par l'erreur numérique :

 $\mathcal{A}_{\theta} e_j^{n+1} = \mathcal{A}_{-(1-\theta)} e_j^n - \Delta t D_c \left(\frac{e^2}{2}\right)_j^n - \Delta t D_c (\bar{u}e)_j^n + \frac{\tau \Delta x \Delta t}{2} D_+ D_-(e)_j^n - \Delta t \epsilon_j^n$

- Étape 2 Consistance :
- Étape 3 Stabilité :

< ロ > < 同 > < 回 > < 回 >

- 2. Preuve : les grandes étapes : $u_0 \in H^s(\mathbb{R})$ avec $s \ge 6$ $\mathcal{A}_{\theta} = I + \theta \Delta t D_+ D_-$
 - Étape 1 Équation vérifiée par l'erreur numérique : $\mathcal{A}_{\theta} e_{j}^{n+1} = \mathcal{A}_{-(1-\theta)} e_{j}^{n} - \Delta t D_{c} \left(\frac{e^{2}}{2}\right)_{i}^{n} - \Delta t D_{c} (\bar{u}e)_{j}^{n} + \frac{\tau \Delta x \Delta t}{2} D_{+} D_{-}(e)_{j}^{n} - \Delta t e_{j}^{n}$
 - Étape 2 Consistance : Par des DL de Taylor : $||\epsilon^n||_{\ell^{\infty}\ell^2_{\Delta}} \leq C_C(T, ||u_0||_{H^6})\Delta x$ Si besoin on régularise u_0 par produit de convolution avec une suite régularisante.
 - Étape 3 Stabilité :

- 2. Preuve : les grandes étapes : $u_0 \in H^s(\mathbb{R})$ avec $s \ge 6$ $\mathcal{A}_{\theta} = I + \theta \Delta t D_+ D_-$
 - Étape 1 Équation vérifiée par l'erreur numérique : $\mathcal{A}_{\theta} e_{j}^{n+1} = \mathcal{A}_{-(1-\theta)} e_{j}^{n} - \Delta t D_{c} \left(\frac{e^{2}}{2}\right)_{i}^{n} - \Delta t D_{c} (\bar{u}e)_{j}^{n} + \frac{\tau \Delta x \Delta t}{2} D_{+} D_{-}(e)_{j}^{n} - \Delta t e_{j}^{n}$
 - Étape 2 Consistance : Par des DL de Taylor : ||εⁿ||_{ℓ∞ℓ²_Δ} ≤ C_C(T, ||u₀||_{H⁶})Δx
 Si besoin on régularise u₀ par produit de convolution avec une suite régularisante.
 - Étape 3 Stabilité : Se ramener à une inégalité de type fort-faible discrète

3. Preuve : les grandes étapes : $u_0 \in H^s(\mathbb{R})$ avec $s \ge 6$

Inégalité de type fort-faible

Unicité fort-faible [Dafermos '79, DiPerna '79]

 $\forall t \in [0, T], ||u(t) - \tilde{u}(t)||_{L^2(\mathbb{R})} \leq C(||\partial_x \tilde{u}||_{L^\infty(\mathbb{R})})||u_0 - \tilde{u}_0||_{L^2(\mathbb{R})},$

- avec \bullet *u* : une solution entropique faible
 - \tilde{u} : la solution régulière forte

But : obtenir une version discrète

 $||v^{n+1} - \bar{u}^{n+1}||^2_{\ell^2_{\Delta}} = ||e^{n+1}||^2_{\ell^2_{\Delta}} \le C(||D_+(\bar{u})^n||_{\ell^\infty})||e^n||^2_{\ell^2_{\Delta}} + \Delta t^2 ||\epsilon^n||^2_{\ell^2_{\Delta}},$

avec • u : remplacée par $(v_j^n)_{(n,j)}$ • \tilde{u} : remplacée par \bar{u} [Cancès, Mathis, Seguin '12]

▶ Preuve (cas continu) : Soit (η, g) un couple entropie/flux d'entropie, on définit l'entropie relative $\eta(.|.)$ et le flux d'entropie relative $\mathscr{G}(.,.)$ par

 $\eta(u|\tilde{u}) = \eta(u) - \eta(\tilde{u}) - \nabla_u \eta(\tilde{u})(u - \tilde{u}), \qquad \mathcal{G}(u, \tilde{u}) = g(u) - g(\tilde{u}) - \nabla_u \eta(\tilde{u})(f(u) - f(\tilde{u})).$ Dans le cas de l'équation de Burgers, $f(u) = \frac{u^2}{2}$.

► Par exemple, $\eta_0(u) = u^2 \Rightarrow \eta_0(u|\tilde{u}) = (u - \tilde{u})^2$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のの()

2. Preuve : les grandes étapes : $u_0 \in H^s(\mathbb{R})$ avec $s \ge 6$ $\mathcal{A}_{\theta} = I + \theta \Delta t D_+ D_- D_-$

• Étape 1 Équation vérifiée par l'erreur numérique : $\mathcal{A}_{\theta} e_{j}^{n+1} = \mathcal{A}_{-(1-\theta)} e_{j}^{n} - \Delta t D_{c} \left(\frac{e^{2}}{2}\right)_{j}^{n} - \Delta t D_{c} (\bar{u}e)_{j}^{n} + \frac{\tau \Delta x \Delta t}{2} D_{+} D_{-}(e)_{j}^{n} - \Delta t \epsilon_{j}^{n}$

- Étape 2 Consistance : Par des DL de Taylor : $||\epsilon^n||_{\ell^{\infty}\ell^2_{\Delta}} \leq C_C(T, ||u_0||_{H^6})\Delta x$ Si besoin on régularise u_0 par produit de convolution avec une suite régularisante.
- Étape 3 Stabilité : Se ramener à une inégalité de type fort-faible discrète.

イロト 不得 トイヨト イヨト

18 / 25

2. Preuve : les grandes étapes : $u_0 \in H^s(\mathbb{R})$ avec $s \ge 6$

 $\mathcal{A}_{\theta} = I + \theta \Delta t D_{+} D_{+} D_{-}$

• Étape 1 Équation vérifiée par l'erreur numérique :

 $\mathcal{A}_{\theta} e_j^{n+1} = \mathcal{A}_{-(1-\theta)} e_j^n - \Delta t D_c \left(\frac{e^2}{2}\right)_j^n - \Delta t D_c (\bar{u} e)_j^n + \frac{\tau \Delta x \Delta t}{2} D_+ D_- (e)_j^n - \Delta t \epsilon_j^n$

- Étape 2 Consistance : Par des DL de Taylor : $||\epsilon^n||_{\ell^{\infty}\ell^2_{\Delta}} \leq C_C(T, ||u_0||_{H^6})\Delta x$ Si besoin on régularise u_0 par produit de convolution avec une suite régularisante.
- Étape 3 Stabilité : Se ramener à une inégalité de type fort-faible discrète.
 Par des intégrations par parties discrètes on obtient (contrôle des termes résiduels grâce aux conditions CFL et à la condition sur τ)

$$\left|\left|\mathcal{A}_{\theta}e^{n+1}\right|\right|_{\ell_{\Delta}^{2}}^{2} \leq \left|\left|\mathcal{A}_{\theta}e^{n}\right|\right|_{\ell_{\Delta}^{2}}^{2} \left(1 + \Delta t||e^{n}||_{\ell^{\infty}} + \Delta t||D_{+}(\bar{u})^{n}||_{\ell^{\infty}}\right) + \Delta t^{2}||\epsilon^{n}||_{\ell_{\Delta}^{2}}^{2}$$

Hypothèse de récurrence : $||e^{n}||_{\ell^{\infty}} \leq \Delta x^{\frac{1}{2}-\gamma}$. D'après le lemme de Grönwall, on a

$$||e^{n+1}||_{\ell^{2}_{\Delta}}^{2} \leq \exp\left(T + \int_{0}^{T} ||\partial_{x}u(s,.)||_{L^{\infty}} ds\right) T \sup_{\rho \in [0,n]} ||\epsilon^{\rho}||_{\ell^{2}_{\Delta}}^{2}$$

- ► L'intégrale $\int_0^T ||\partial_x u(s,.)||_{L^{\infty}} ds$ est contrôlée par $u_0 \in H^{\frac{3}{4}}(\mathbb{R})$.
- ► Il faut vérifier que $||e^{n+1}||_{\ell^{\infty}} \leq \Delta x^{\frac{1}{2}-\gamma}$ pour finir le raisonnement par récurrence, c'est à cette étape que nous devons distinguer les cas $\frac{3}{4} \leq s < 3$ et $3 \leq s \leq 6$.

Équation de KdV : non linéarité et dispersion

2 Ordre de convergence pour l'équation de KdV

3 Analyse numérique du système abcd

- Le système continu : le problème de Cauchy
- Convergence du schéma numérique

< □ > < 同 > < 回 > < Ξ > < Ξ

1. Le système continu : le problème de Cauchy Le problème de Cauchy est le suivant

$$\begin{cases} \partial_t \eta - b \partial_x^2 \partial_t \eta + \partial_x w + a \partial_x^3 w + \partial_x (\eta w) = 0, \\ \partial_t w - d \partial_x^2 \partial_t w + \partial_x \eta + c \partial_x^3 \eta + \partial_x \left(\frac{w^2}{2}\right) = 0, \quad \forall (t, x) \in [0, T] \times \mathbb{R}, \quad (abcd) \\ (\eta, w)|_{t=0}(x) = (\eta_0, w_0)(x), \quad \forall x \in \mathbb{R}. \end{cases}$$
avec $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \frac{1}{3}.$

Clémentine Courtès (IRMA, Strasbourg)

イロト イ団ト イヨト イヨト

1. Le système continu : le problème de Cauchy Le problème de Cauchy est le suivant

avec

$$\begin{cases} \partial_t \eta - \mathbf{b} \partial_x^2 \partial_t \eta + \partial_x w + \mathbf{a} \partial_x^3 w + \partial_x (\eta w) = 0, \\ \partial_t w - \mathbf{d} \partial_x^2 \partial_t w + \partial_x \eta + \mathbf{c} \partial_x^3 \eta + \partial_x \left(\frac{w^2}{2}\right) = 0, \quad \forall (t, x) \in [0, T] \times \mathbb{R}, \quad (\mathsf{abcd}) \\ (\eta, w)|_{t=0}(x) = (\eta_0, w_0)(x), \quad \forall x \in \mathbb{R}. \end{cases}$$

Théorème ([Bona, Chen, Saut, '02], [Linares, Pilod, Saut '12]) Le système abcd est linéairement bien posé dans les deux cas suivants : si $a \le 0, c \le 0, b \ge 0, d \ge 0$ ou $a = c > 0, b \ge 0, d \ge 0$.

< ロ > < 同 > < 回 > < 回 >

1. Le système continu : le problème de Cauchy Le problème de Cauchy est le suivant

$$\begin{cases} \partial_t \eta - \mathbf{b} \partial_x^2 \partial_t \eta + \partial_x w + \mathbf{a} \partial_x^3 w + \partial_x (\eta w) = 0, \\ \partial_t w - \mathbf{d} \partial_x^2 \partial_t w + \partial_x \eta + \mathbf{c} \partial_x^3 \eta + \partial_x \left(\frac{w^2}{2}\right) = 0, \quad \forall (t, x) \in [0, T] \times \mathbb{R}, \quad (\text{abcd}) \\ (\eta, w)|_{t=0}(x) = (\eta_0, w_0)(x), \quad \forall x \in \mathbb{R}. \end{cases}$$

Théorème ([Burtea, '16])

<

• Si $(\eta_0, w_0) \in H^{s_1} \times H^{s_2}(\mathbb{R})$ et si $a \leq 0, c \leq 0, b \geq 0, d \geq 0$ (en excluant certains cas), alors il existe un temps $T = T(\eta_0, w_0)$ et une unique solution $(\eta, w) \in \mathscr{C}([0, T], H^{s_1} \times H^{s_2}(\mathbb{R}))$ au problème de Cauchy (abcd).

• De plus, l'énergie \mathcal{E} suivante est conservée : il existe F telle que

$$\sup_{t\in[0,T]} \mathcal{E}(\eta(t),w(t)) \leq F\left(\mathcal{E}(\eta_0,w_0)\right)$$

 $\dot{ou} \left[\mathcal{E}(\eta, w) \right]^2 = ||\eta||_{L^2}^2 + (b-c)||\partial_x \eta||_{L^2}^2 + (-c)b||\partial_x^2 \eta||_{L^2}^2 + ||w||_{L^2}^2 + (d-a)||\partial_x w||_{L^2}^2 + (-a)d||\partial_x^2 w||_{L^2}^2.$

 Remarque : [Existence en temps long]
 Plus précisément, il est démontré dans [Burtea, '16] que si les termes

 dispersifs et non linéaires sont d'ordre ϵ dans le système (abcd) alors le temps T (temps d'existence des solutions) est d'ordre $\mathcal{O}\left(\frac{1}{\epsilon}\right)$.
 $\epsilon \square \flat \epsilon \textcircled{O} \flat \epsilon \equiv \flat \epsilon \equiv \flat \epsilon \equiv \flat \epsilon$

Clémentine Courtès (IRMA, Strasbourg)

Équation de KdV : non linéarité et dispersion

2 Ordre de convergence pour l'équation de KdV

3 Analyse numérique du système abcd

- Le système continu : le problème de Cauchy
- Convergence du schéma numérique

< □ > < 同 > < 回 > < Ξ > < Ξ

2. Convergence du schéma numérique • Schéma numérique général

$$\frac{1}{(I-bD_{+}D_{-})} \frac{\eta_{j}^{n+1} - \eta_{j}^{n}}{\Delta t} + \theta D_{c}(w)_{j}^{n+1} + (1-\theta)D_{c}(w)_{j}^{n} + a\theta D_{+}D_{-}D_{c}(w)_{j}^{n+1} + a(1-\theta)D_{+}D_{-}D_{c}(w)_{j}^{n}}{+ D_{c}(\eta w)_{j}^{n}} = (1-\operatorname{sgn} b)\frac{\tau_{1}\Delta x}{2}D_{+}D_{-}(\eta)_{j}^{n},$$

$$(I-dD_{+}D_{-})\frac{w_{j}^{n+1} - w_{j}^{n}}{\Delta t} + \theta D_{c}(\eta)_{j}^{n+1} + (1-\theta)D_{c}(\eta)_{j}^{n} + c\theta D_{+}D_{-}D_{c}(\eta)_{j}^{n+1} + c(1-\theta)D_{+}D_{-}D_{c}(\eta)_{j}^{n}}{+ D_{c}\left(\frac{w^{2}}{2}\right)_{j}^{n}} = (1-\operatorname{sgn} d)\frac{\tau_{2}\Delta x}{2}D_{+}D_{-}(w)_{j}^{n}.$$

- Schéma de Rusanov pour la partie non linéaire,

 $-\theta$ -schéma centré pour la partie dispersive

Remarque : $\theta = 1$ si bd = 0 et $\theta = \frac{1}{2}$ ou 1 si $bd \neq 0$.

Convergence du schéma numérique On appelle e_i^n et f_i^n les deux erreurs de convergence suivantes $e_i^n = \eta_i^n - \bar{\eta}(t^n, x_j)$ et $f_i^n = w_i^n - \bar{w}(t^n, x_j)$, pour tout $(n, j) \in [0, N] \times \mathbb{R}$. Théorème ([Burtea, C.]) $bd \neq 0$ **bd** = 0 (en excluant 5 cas dont $\mathbf{b} = \mathbf{d} = 0$) Pour tout $(\eta_0, w_0) \in H^{s_1}(\mathbb{R}) \times H^{s_2}(\mathbb{R})$, et pour tout T > 0 tel que $(\eta, w) \in \mathscr{C}([0, T], H^{s_1} \times H^{s_2})$ soit la solution sur [0, T] du système *abcd* avec s > 7. s > 9Choisissons τ_1 et τ_2 tels que $\sup_{t \in [0, T]} ||w(t, .)||_{L^{\infty}} < \min(\tau_1, \tau_2).$ Il existe $\omega_0 > 0$ tel que pour tout $\Delta t < \omega_0$ et $\Delta x < \omega_0$ tels que $\max\left[(1-\operatorname{sgn}\boldsymbol{b})\tau_1,(1-\operatorname{sgn}\boldsymbol{d})\tau_2\right]\Delta t < \Delta x$ alors le schéma numérique vérifie sup $\mathcal{E}_{discret}(e^n, f^n) \leq C_{abcd}(\Delta t + \Delta x^2)$ $\sup \mathcal{E}_{discret}(e^n, f^n) \leq C_{abcd} \Delta x$ $n \in [0, N]$ $n \in [0, N]$ $\mathbf{ou} \ [\mathcal{E}_{\text{discret}}(e^n, f^n)]^2 = ||e^n||_{\ell_A^2}^2 + (\mathbf{b} - \mathbf{c})||D_+ e^n||_{\ell_A^2}^2 + \mathbf{b}(-\mathbf{c})||D_+ D_- e^n||_{\ell_A^2}^2 + ||f^n||_{\ell_A^2}^2 + (\mathbf{d} - \mathbf{a})||D_+ f^n||_{\ell_A^2}^2$ $+d(-a)||\overline{D}_{+}D_{-}f^{n}||_{\ell^{2}}^{2}$.

Illustrations numériques

Cas $a = -\frac{1}{6}, b = 0, c = 0, d = \frac{1}{2}$				
		énergie	ordre	numerical slope= 0.97061
J	Δx	sup $\mathcal{E}_{discret}(e^n, f^n)$	numérique	
		$n \in \llbracket 0, N \rrbracket$		
				à.,
640	$6,2500.10^{-2}$	$3,6218.10^{-1}$		5 10 ⁻¹
1280	$3,1250.10^{-2}$	$1,9282.10^{-1}$	0,9316	
2560	$1,5625.10^{-2}$	$1,0036.10^{-1}$	0,9478	
5120	$7,8125.10^{-3}$	$5,1627.10^{-2}$	0,9578	10.2
10240	$3,9063.10^{-3}$	$2,6345.10^{-2}$	0,9672	10 ⁻² 10 ⁻ Δ x
				Ordre théorique : 1

		numerical slope= 1.0005		
Cas $a = -\frac{7}{30}, b = \frac{7}{15}, c = -\frac{2}{5}, d = \frac{1}{2}$				
		énergie	ordre	
J	Δx	sup $\mathcal{E}_{ ext{discret}}(e^n, f^n)$	numérique	
		<i>n</i> ∈ [0, <i>N</i>]]		(610 ⁻
				5
640	$6,2500.10^{-2}$	$2,2786.10^{-2}$		
1280	$3,1250.10^{-2}$	$1,1261.10^{-2}$	1,0169	
2560	$1,5625.10^{-2}$	$5,6130.10^{-3}$	1,0043	10 ⁻³ 10 ⁻² 10 ⁻¹
5120	$7,8125.10^{-3}$	$2,8479.10^{-3}$	0,9789	Δx
				Urdre theorique : 1

2

< □ > < □ > < □ > < □ > < □ >

Conclusion et perspectives

Conclusion

- Nous avons trouvé une méthode pour étudier à la fois le terme non linéaire et le terme dispersif de KdV et du système *abcd*.
- Nous avons quantifié l'ordre de convergence par rapport à la régularité de Sobolev de la donnée initiale dans le cas de l'équation de KdV.

Perspectives

Déterminer un schéma numérique pour un système *abcd* avec des termes **non** linéaires et dispersifs d'ordre e et étudier sa convergence.

[La difficulté serait alors de trouver des majorations uniformes en ϵ , pour ne pas avoir un ordre de convergence en $\frac{\Delta x}{\epsilon}$].

< ロ > < 同 > < 回 > < 回 >

Merci pour votre attention

< □ > < □ > < □ > < □ > < □ >