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Incompressible Navier-Stokes equations in an open subset 2 C R%:

ur +diviu®@u) — pAu+ VP =0 in Ry xQ
(vs): 1™ ( ) — 4 i Ry
divu =0 in Ry x Q.

1 t 1
Energy balance : 5Hu(t)||% + /L/ HVuH% dr = 5||u0||§.
0

o Leray solutions : any divergence free uo € L?(f2) generates at least one global
weak solution satisfying the energy inequality.

@ d = 2: Those solutions are unique.

@ d = 3: Those solutions are unique in a suitable class of smoother solutions.
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The inhomogeneous incompressible Navier-Stokes equations read:
(pu)¢ + div(pu @ u) — pAu+ VP =0 in Ry xQ
(INS): < divu=0 in Ry xQ
pt +div(pu) =0 in Ry x Q.

1 t 1
Energy balance : _ [|/p() u(®)|[3 + p /0 IVull3 dr = 2 lIv/po uoll3-

o Conservation of LP norms of the density and of inf p(t).

o Global weak solutions with finite energy for any pair (po,uo) such that
po € L>®(Q) with pg >0, and /poup € L?(Q) with divug = 0.

Even if d = 2, uniqueness in the class of finite energy solutions is a widely
open question.
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Is (INS) a good model for mixture of non-reacting fluids ?

@ Can we solve uniquely (INS) if pg is discontinuous across an interface ?

@ Is the solution unique for such a pg 7

© Can we allow for vacuum regions ?

@ Is the regularity of interfaces preserved during the evolution ?
e Having (at least) Vu € L'(0,T; L>°(12)) is fundamental both for preserving the
“density patch” structure and for proving the uniqueness.

e Even for d =2 and for the heat equation, having just up € L?(Q2) does not
ensure Vu € L1(0,T; L>=(Q)).
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The main statement

Theorem (Global existence and uniqueness in the 2D tor

Consider any data (po,uo) in L>=(T?) x H'(T2?) with po >0 and divug = 0.
Then System (INS) supplemented with data (po,uo) admits a unique global
solution (p,u, VP) that satisfies the energy equality, the conservation of total
mass and momentum,

pEL®RL;L®), ueL®Ri;HY), /pur, V2u, VP € L?(Ry; L?)
and also, for all 1 <r <2, 1<m<oco and T >0,
V(VtP), V2(\/tu) € L=(0,T; L") N L?(0, T; L™).

Furthermore, we have \/pu € C(R4;L?) and p € C(R4; LP) for all p < occ.

o Similar statement in 2D bounded domains, if taking uo € HJ ().

o Similar statement in the 3D case, under some smallness condition on ug.
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Definition (of a weak solution)

The pair (p,u) is a weak solution of (INS) if for all ¢ € [0,7) and function ¢ in
C([0,T) x % R), we have

t t
)

(p(t), 4(t)) — (o, Po) — / (p, Orp) dT —/ (pu, Vo) dr = 0, 1)
( 0
t
[ wvs)ar=o, @)
0
and for all divergence-free function ¢ € C2°([0, 7)) x Q;R?),

¢
(p(t)u(t), ©(t)) — (pouo, po) — /0 {pu, Orp) dr

t t
- [tusuVerdr+u [ (Vu,Ve)dr =0 ()
0 0

where (-,-) designates the distribution bracket in Q.
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Main steps of the proof:

@ Global-in-time estimates for Sobolev regularity of w.

@ Sobolev regularity of u: and time weights.

© Shift of regularity and integrability : from time to space variable.
@ The existence scheme.

@ Lagrangian coordinates and uniqueness.

Assume with no loss of generality that

/pod:r:uzl and /pouodxzo.
T2 T2
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Step 1: global-in-time Sobolev estimates

e Take the L? scalar product of p(us +u - Vu) — Au+ VP =0 with u;:

1d ) 1 5 1 §
< = — , - Vul|* dx.
Su \Vu| dx + /EZ plut]” dz < 5 /1‘2 plut|® dz + 2-/]1"2 plu - Vul|® dx

From —Au+ VP = —(put + pu-Vu) and divAu = 0, we have
V2l +HIVPIZ: = @bVl < 20° ([ shuldos [ uVupar)-

Hence

1 3
|Vu\2dl + = / plue)? (11+ (HV21L||L>+||VPHL2) < 7/ plu - Vu|? da.
dt 2 T2 2, T2
e Apply Holder and Gagliardo-Nirenberg inequality, and use p < p* := ||po|| L= :
plu-Vude < p*ulZalIVulZe < Cpull 2 [VullZs |2l
szu ul®de < p*llull74|Vullfs < Cpllullp2]|Vull]2 wul| 2

\IVzuHLz +C(p*)Plull 72 I Vul 2 Va7 2

_12*

o If p > p. >0, then H“Hiz < p*_lHﬁ'u,Hiz. Combine the basic energy
inequality with Gronwall lemma.
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Step 1: global-in-time Sobolev estimates (continued)

Lemma (B. Desjardins, 1997)
If [r2pde=1 and [5 pzde =0 then

3 P*IV2I17

4 4 2 L2
pz da:) < CllVpzl 211Vl 210g2<e+||p—1 + ) (4
(/11-2 veEl = HLZ H\ﬁzHiz )

1
bl
° Write/ plu - Vul?dz < /p* (/ plul? dT> HVu||2L4
T2 T2

and use (4) with z = u, energy balance and ab < a?/2 + b?/2 :
/. plu - Vul?dz < L||V2u||22
T2 — 12p* L

2
+C(p")2IIV/Po uoll? 2 | Vull 32 [ Vul|F 2 log <6+||Po — 1017, + P*LHQQ)
llv/po uoll
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Step 1: global-in-time Sobolev estimates (continued)

We eventually get

d
X < fXlog(e +X),

with f(t) := CoHVu(t)HZL2 for some suitable Cy = C(po,uo) and

: 1 , 1 ‘
X(1) ;:/ |Vau(t)|? da + 7/ (p\ut|2 + (V22 + \VP\Q))dm.
T2 2 Jr2 4p*

Hence

(e +X(t)) < (6 _‘_X(O))exp(f(g f(r)dr) < (e+X(O))EXP(COH\/%UUHiz),

e However X < oo does not imply Vu € Lllor;<R+; L>°(T?2)).
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Step 2: Sobolev regularity of wu;

Take the L? scalar product of plut +u-Vu) — Au+ VP =0 with ug:

1d

- — p|u,g|2 dx +/ \Vut|2 dr = / (ptut — ptu - Vu — puy - Vu) cup dx.
2 dt Jr2 T2 T2

e For (\/put)|t=o0 to be defined, we need the compatibility condition

— Aug = +/pog + VPy with g e L2, (5)

e Condition (5) is not needed if we compensate the singularity at time 0 by some
power of t: take the scalar product of p(u¢ + u-Vu) — Au+ VP =0 with tu:

t
IWotullze + [ IVvFuls dr < ho),
0

where h is a nondecreasing nonnegative function with h(0) =0 (use Step 1 and
energy identity).
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Step 3: Shift of regularity from time to space variable

o Step 1 gives Vu € L®(Ry; L2), Vu € L2(Ry; HY), VP, /pus€ L?(Ry x T?).

o Step 2 gives /ptus € LS (Ry; L?) and VVius € LE (Ry; L2).

loc

e Step 3: Use Stokes equation:
—AVtu+ VVEP = —Vtpuy —Vipu - Vu,
divv/tu = 0.
Steps 1,2 + embedding imply that for all 7" > 0, the right-hand side is
almost in L2(0,7; L°>°). Hence so do V2y/tu and V1 P.

e This implies that Vu € LI (0,T; L>).

loc
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Step 4: The existence scheme

e Smooth out pg and make it positive :
B € CH(T?;]0,00[) with p§ — po in L weak x.

e Solve (INS) with data (p{,u0). From prior works (e.g. Ladyzhenskaya &
Solonnikov (78) and others) we get a global ‘smooth’ solution (p™,u™).

e From the previous steps, we get uniform estimates.
e By interpolation, we have (u™), ¢y is bounded in H? ([0,T] x T2) for all T > 0.

e Use compact embeddings to get strong convergence for (u™),cy and pass to
the limit.

e p" — p in C([0,T]; L?) (similar as for weak solutions).
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Step 4: Lagrangian coordinates and uniqueness

Lagrangian coordinates:

pt,y) :== p(t,x), a(t,y):=u(t,x) and P(t,y):= P(t,xz) with |z

where X is the flow of u defined by

t
X(t,y):y—&—/0 w(T, X(7,y)) dr.

t
Hence DX (t,y) =1d +/ Da(r,y) dr.
0

The INS equations in Lagrangian coordinates:

e p is time independent.
o (u

, P) satisfies
potr — div(ATAVaE) +TA- VP =0,
div(Aa) =TA: Va =0,
with

+oo -t k
= 1= —1)k u(r,-)dr | .
A=(DyX)"h =3 ( 1)(()D(,)d>

k=0
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Step 4: Lagrangian coordinates and uniqueness (continued)

e Consider two solutions (p1,u1,P1) and (p2,us, P2) for the same data (po,uo).
e Lagrangian coordinates: (p;,u;, P;) ~ (po, i, P;), 1=1,2.
o (0u,0P) := (uz — u1, P» — P1) fulfills
{ poduy — div(A1TA1Véu) + TA1- VP = div ((A2TA2 — A1TAL) Vi) + T6A - VP,
div (A1du) = div (A ag) = 764 : V.
Decompose du into du = w + z, where is a suitable solution to:
div(Ajw) = div(8A@2) = T8A : Vo, wli=o = 0,
and z fulfills z(0) = 0 and
pozt —div(A1TA1Vz2) + TA, - VP

= div ((AQTAQ — A1T141)Vﬁ2) + T5A - VPQ — pow + div (A1TAlVZ)7
div(Aiz) = 0.
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Step 4: Lagrangian coordinates and uniqueness (continued)

e We have div(Ajw) = g where A1 ~1d, det Ay =1 and g =divR.
This may be recast as ®(v) = v with

®(v) ;= VA Ldiv((Id — A1)v + R).

After some computation:

T T
/[; vauiz dt < (,t(T)/O ||V§uH2Lz dt with 71“11;10 (T) = 0. (6)
e From poz: — div (AlTA1Vz) +TA. V6P = --- and div(A1z) =0, we get
1d [

2 ' T 2
- e d: Ay - Vz2de = -
3 Lol I+AJ | Velda

After some computation:

T T
sup (VAGOI3a + [ 113 de < e(r) [ Vel ar M)
te[0,7] 0 0

e Putting (6) and (7) together yields Vdou = 0 whence w =0, \/p,z =0 and
Vz = 0. Finally du = 0.
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