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Piotr Bogus law Mucha, Warsaw University

Journées Jeunes EDPistes 2018, Institut Elie Cartan, Université de Lorraine

March 23th, 2018
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Incompressible Navier-Stokes equations in an open subset Ω ⊂ Rd :

(NS) :

{
ut + div(u⊗ u)− µ∆u+∇P = 0 in R+ × Ω

divu = 0 in R+ × Ω.

Energy balance :
1

2
‖u(t)‖22 + µ

∫ t

0
‖∇u‖22 dτ =

1

2
‖u0‖22.

Leray solutions : any divergence free u0 ∈ L2(Ω) generates at least one global
weak solution satisfying the energy inequality.

d = 2: Those solutions are unique.

d = 3: Those solutions are unique in a suitable class of smoother solutions.
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The inhomogeneous incompressible Navier-Stokes equations read:

(INS) :


(ρu)t + div(ρu⊗ u)− µ∆u+∇P = 0 in R+ × Ω

divu = 0 in R+ × Ω

ρt + div(ρu) = 0 in R+ × Ω.

Energy balance :
1

2
‖
√
ρ(t)u(t)‖22 + µ

∫ t

0
‖∇u‖22 dτ =

1

2
‖√ρ0 u0‖22.

Conservation of Lp norms of the density and of inf ρ(t).

Global weak solutions with finite energy for any pair (ρ0, u0) such that
ρ0 ∈ L∞(Ω) with ρ0 ≥ 0 , and

√
ρ0u0 ∈ L2(Ω) with divu0 = 0.

Even if d = 2, uniqueness in the class of finite energy solutions is a widely
open question.
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Is (INS) a good model for mixture of non-reacting fluids ?

1 Can we solve uniquely (INS) if ρ0 is discontinuous across an interface ?

2 Is the solution unique for such a ρ0 ?

3 Can we allow for vacuum regions ?

4 Is the regularity of interfaces preserved during the evolution ?

• Having (at least) ∇u ∈ L1(0, T ;L∞(Ω)) is fundamental both for preserving the
“density patch” structure and for proving the uniqueness.

• Even for d = 2 and for the heat equation, having just u0 ∈ L2(Ω) does not
ensure ∇u ∈ L1(0, T ;L∞(Ω)).
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The main statement

Theorem (Global existence and uniqueness in the 2D torus)

Consider any data (ρ0, u0) in L∞(T2)×H1(T2) with ρ0 ≥ 0 and divu0 = 0.
Then System (INS) supplemented with data (ρ0, u0) admits a unique global
solution (ρ, u,∇P ) that satisfies the energy equality, the conservation of total
mass and momentum,

ρ ∈ L∞(R+;L∞), u ∈ L∞(R+;H1),
√
ρut,∇2u,∇P ∈ L2(R+;L2)

and also, for all 1 ≤ r < 2, 1 ≤ m <∞ and T ≥ 0,

∇(
√
tP ), ∇2(

√
tu) ∈ L∞(0, T ;Lr) ∩ L2(0, T ;Lm).

Furthermore, we have
√
ρu ∈ C(R+;L2) and ρ ∈ C(R+;Lp) for all p <∞.

Similar statement in 2D bounded domains, if taking u0 ∈ H1
0 (Ω) .

Similar statement in the 3D case, under some smallness condition on u0.
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Definition (of a weak solution)

The pair (ρ, u) is a weak solution of (INS) if for all t ∈ [0, T ) and function φ in
C∞c ([0, T )× Ω;R), we have

〈ρ(t), φ(t)〉 − 〈ρ0, φ0〉 −
∫ t

0
〈ρ, ∂tφ〉 dτ −

∫ t

0
〈ρu,∇φ〉 dτ = 0, (1)∫ t

0
〈u,∇φ〉 dτ = 0, (2)

and for all divergence-free function ϕ ∈ C∞c ([0, T )× Ω;Rd),

〈ρ(t)u(t), ϕ(t)〉 − 〈ρ0u0, ϕ0〉 −
∫ t

0
〈ρu, ∂tϕ〉 dτ

−
∫ t

0
〈ρu⊗ u,∇ϕ〉 dτ + µ

∫ t

0
〈∇u,∇ϕ〉 dτ = 0 (3)

where 〈·, ·〉 designates the distribution bracket in Ω.
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Main steps of the proof:

1 Global-in-time estimates for Sobolev regularity of u .

2 Sobolev regularity of ut and time weights.

3 Shift of regularity and integrability : from time to space variable.

4 The existence scheme.

5 Lagrangian coordinates and uniqueness.

Assume with no loss of generality that∫
T2
ρ0 dx = µ = 1 and

∫
T2
ρ0u0 dx = 0.
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Step 1: global-in-time Sobolev estimates

• Take the L2 scalar product of ρ(ut + u · ∇u)−∆u+∇P = 0 with ut :

1

2

d

dt

∫
T2
|∇u|2dx+

∫
T2
ρ|ut|2 dx ≤

1

2

∫
T2
ρ|ut|2 dx+

1

2

∫
T2
ρ|u · ∇u|2 dx.

From −∆u+∇P = −(ρut + ρu · ∇u) and div∆u = 0, we have

‖∇2u‖2
L2 +‖∇P‖2

L2 = ‖ρ(∂tu+u·∇u)‖2
L2 ≤ 2ρ∗

(∫
T2
ρ|ut|2 dx+

∫
T2
ρ|u · ∇u|2 dx

)
·

Hence

d

dt

∫
T2
|∇u|2dx+

1

2

∫
T2
ρ|ut|2 dx+

1

4ρ∗
(
‖∇2u‖2

L2 +‖∇P‖2
L2

)
≤

3

2

∫
T2
ρ|u · ∇u|2 dx.

• Apply Hölder and Gagliardo-Nirenberg inequality, and use ρ ≤ ρ∗ := ‖ρ0‖L∞ :∫
T2
ρ|u · ∇u|2 dx ≤ ρ∗‖u‖2

L4‖∇u‖2L4 ≤ Cρ∗‖u‖L2‖∇u‖2L2‖∇2u‖L2

≤
1

12ρ∗
‖∇2u‖2

L2 + C(ρ∗)3‖u‖2
L2‖∇u‖2L2‖∇u‖2L2 .

• If ρ ≥ ρ∗ > 0, then ‖u‖2
L2 ≤ ρ−1

∗ ‖
√
ρu‖2

L2 . Combine the basic energy
inequality with Gronwall lemma.
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Step 1: global-in-time Sobolev estimates (continued)

Lemma (B. Desjardins, 1997)

If
∫
T2 ρ dx = 1 and

∫
T2 ρz dx = 0 then

(∫
T2
ρz4 dx

) 1
2

≤ C‖√ρz‖L2‖∇z‖L2 log
1
2

(
e+ ‖ρ− 1‖2

L2 +
ρ∗‖∇z‖2

L2

‖√ρz‖2
L2

)
· (4)

• Write

∫
T2
ρ|u · ∇u|2dx ≤

√
ρ∗
(∫

T2
ρ|u|4 dx

) 1
2

‖∇u‖2
L4

and use (4) with z = u, energy balance and ab ≤ a2/2 + b2/2 :∫
T2
ρ|u · ∇u|2dx ≤

1

12ρ∗
‖∇2u‖2

L2

+C(ρ∗)2‖√ρ0 u0‖2L2‖∇u‖2L2‖∇u‖2L2 log

(
e+‖ρ0 − 1‖2

L2 + ρ∗
‖∇u‖2

L2

‖√ρ0 u0‖2L2

)
·
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Step 1: global-in-time Sobolev estimates (continued)

We eventually get
d

dt
X ≤ fX log(e+X),

with f(t) := C0‖∇u(t)‖2
L2 for some suitable C0 = C(ρ0, u0) and

X(t) :=

∫
T2
|∇u(t)|2 dx+

1

2

∫
T2

(
ρ|ut|2 +

1

4ρ∗
(
|∇2u|2 + |∇P |2

))
dx.

Hence

(e+X(t)) ≤ (e+X(0))exp(
∫ t
0 f(τ) dτ) ≤ (e+X(0))

exp (C0‖
√
ρ0u0‖2L2 )·

• However X <∞ does not imply ∇u ∈ L1
loc(R+;L∞(T2)).
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Step 2: Sobolev regularity of ut

Take the L2 scalar product of ρ(ut + u · ∇u)−∆u+∇P = 0 with utt :

1

2

d

dt

∫
T2
ρ|ut|2 dx+

∫
T2
|∇ut|2 dx =

∫
T2

(
ρtut − ρtu · ∇u− ρut · ∇u

)
· ut dx.

• For (
√
ρut)|t=0 to be defined, we need the compatibility condition

−∆u0 =
√
ρ0g +∇P0 with g ∈ L2. (5)

• Condition (5) is not needed if we compensate the singularity at time 0 by some
power of t : take the scalar product of ρ(ut + u · ∇u)−∆u+∇P = 0 with tutt :

‖
√
ρt ut‖L2 +

∫ t

0
‖∇
√
τ ut‖2L2 dτ ≤ h(t),

where h is a nondecreasing nonnegative function with h(0) = 0 (use Step 1 and
energy identity).
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Step 3: Shift of regularity from time to space variable

Step 1 gives ∇u ∈ L∞(R+;L2), ∇u ∈ L2(R+;H1), ∇P,√ρut∈L2(R+×T2).

Step 2 gives
√
ρt ut ∈ L∞loc(R+;L2) and ∇

√
t ut ∈ L2

loc(R+;L2).

Step 3: Use Stokes equation:{
−∆
√
t u+∇

√
t P = −

√
t ρut −

√
t ρu · ∇u,

div
√
t u = 0.

Steps 1,2 + embedding imply that for all T > 0, the right-hand side is
almost in L2(0, T ;L∞). Hence so do ∇2

√
t u and ∇

√
t P.

• This implies that ∇u ∈ L1
loc(0, T ;L∞).
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Step 4: The existence scheme

• Smooth out ρ0 and make it positive :

ρn0 ∈ C1(T2; ]0,∞[) with ρn0 ⇀ ρ0 in L∞ weak ? .

• Solve (INS) with data (ρn0 , u0). From prior works (e.g. Ladyzhenskaya &
Solonnikov (78) and others) we get a global ‘smooth’ solution (ρn, un).

• From the previous steps, we get uniform estimates.

• By interpolation, we have (un)n∈N is bounded in H
1
8 ([0, T ]×T2) for all T > 0.

• Use compact embeddings to get strong convergence for (un)n∈N and pass to
the limit.

• ρn → ρ in C([0, T ];L2) (similar as for weak solutions).
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Step 4: Lagrangian coordinates and uniqueness

Lagrangian coordinates:

ρ̄(t, y) := ρ(t, x), ū(t, y) := u(t, x) and P̄ (t, y) := P (t, x) with x := X(t, y)

where X is the flow of u defined by

X(t, y) = y +

∫ t

0
u(τ,X(τ, y)) dτ.

Hence DX(t, y) = Id +

∫ t

0
Dū(τ, y) dτ.

The INS equations in Lagrangian coordinates:

ρ̄ is time independent.

(ū, P̄ ) satisfies {
ρ0ūt − div(ATA∇ū) + TA · ∇P̄ = 0,

div(Aū) = TA : ∇ū = 0,

with

A = (DyX)−1 =

+∞∑
k=0

(−1)k
(∫ t

0
Dū(τ, ·) dτ

)k
.
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Step 4: Lagrangian coordinates and uniqueness (continued)

• Consider two solutions (ρ1, u1, P1) and (ρ2, u2, P2) for the same data (ρ0, u0).

• Lagrangian coordinates: (ρi, ui, Pi) ; (ρ0, ūi, P̄i), i = 1, 2.

• (δu, δP ) := (u2 − u1, P2 − P1) fulfills{
ρ0δut − div(A1

TA1∇δu) + TA1 ·∇δP = div
(
(A2

TA2 −A1
TA1

)
∇ū2

)
+ T δA · ∇P̄2,

div(A1δu) = div(δA ū2) = TδA : ∇ū2.

Decompose δu into δu = w + z, where is a suitable solution to:

div(A1w) = div(δA ū2) = TδA : ∇ū2, w|t=0 = 0,

and z fulfills z(0) = 0 and
ρ0zt − div(A1

TA1∇z) + TA1 · ∇δP
= div

(
(A2

TA2 −A1
TA1

)
∇ū2

)
+ T δA · ∇P̄2 − ρ0wt + div(A1

TA1∇z),
div(A1z) = 0.
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Step 4: Lagrangian coordinates and uniqueness (continued)

• We have div(A1w) = g where A1 ≈ Id , detA1 = 1 and g = divR .
This may be recast as Φ(v) = v with

Φ(v) := ∇∆−1div((Id −A1)v +R).

After some computation:∫ T

0
‖∇w‖2

L2 dt ≤ c(T )

∫ T

0
‖∇δu‖2

L2 dt with lim
T→0

c(T ) = 0. (6)

• From ρ0zt − div(A1
TA1∇z) + TA1 ·∇δP = · · · and div(A1z) = 0, we get

1

2

d

dt

∫
T2
ρ0|z|2 dx+

∫
T2
|TA1 · ∇z|2dx = · · · .

After some computation:

sup
t∈[0,T ]

‖√ρ0z(t)‖2L2 +

∫ T

0
‖∇z‖2

L2 dt ≤ c(T )

∫ T

0
‖∇δu‖2

L2 dt. (7)

• Putting (6) and (7) together yields ∇δu ≡ 0 whence w ≡ 0 ,
√
ρ
0
z ≡ 0 and

∇z ≡ 0. Finally δu ≡ 0.
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